
Project Number 732223

D3.4 Natural Language Components

Version 1.0
27 December 2017

Final

Public Distribution

Edge Hill University

Project Partners: Athens University of Economics & Business, Bitergia, Castalia Solutions,
Centrum Wiskunde & Informatica, Eclipse Foundation Europe, Edge Hill
University, FrontEndART, OW2, SOFTEAM, The Open Group, University of
L′Aquila, University of York, Unparallel Innovation

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
CROSSMINER Project Partners accept no liability for any error or omission in the same.

© 2018 Copyright in this document remains vested in the CROSSMINER Project Partners.

D3.4 Natural Language Components

Project Partner Contact Information

Athens University of Economics & Business Bitergia
Diomidis Spinellis José Manrique Lopez de la Fuente
Patision 76 Calle Navarra 5, 4D
104-34 Athens 28921 Alcorcón Madrid
Greece Spain
Tel: +30 210 820 3370 Tel: +34 6 999 279 58
E-mail: dds@aueb.gr E-mail: jsmanrique@bitergia.com
Castalia Solutions Centrum Wiskunde & Informatica
Boris Baldassari Jurgen J. Vinju
10 Rue de Penthièvre Science Park 123
75008 Paris 1098 XG Amsterdam
France Netherlands
Tel: +33 6 48 03 82 89 Tel: +31 20 592 4102
E-mail: boris.baldassari@castalia.solutions E-mail: jurgen.vinju@cwi.nl
Eclipse Foundation Europe Edge Hill University
Philippe Krief Yannis Korkontzelos
Annastrasse 46 St Helens Road
64673 Zwingenberg Ormskirk L39 4QP
Germany United Kingdom
Tel: +33 62 101 0681 Tel: +44 1695 654393
E-mail: philippe.krief@eclipse.org E-mail: yannis.korkontzelos@edgehill.ac.uk
FrontEndART OW2 Consortium
Rudolf Ferenc Cedric Thomas
Zászló u. 3 I./5 114 Boulevard Haussmann
H-6722 Szeged 75008 Paris
Hungary France
Tel: +36 62 319 372 Tel: +33 6 45 81 62 02
E-mail: ferenc@frontendart.com E-mail: cedric.thomas@ow2.org
SOFTEAM The Open Group
Alessandra Bagnato Scott Hansen
21 Avenue Victor Hugo Rond Point Schuman 6, 5th Floor
75016 Paris 1040 Brussels
France Belgium
Tel: +33 1 30 12 16 60 Tel: +32 2 675 1136
E-mail: alessandra.bagnato@softeam.fr E-mail: s.hansen@opengroup.org
University of L′Aquila University of York
Davide Di Ruscio Dimitris Kolovos
Piazza Vincenzo Rivera 1 Deramore Lane
67100 L′Aquila York YO10 5GH
Italy United Kingdom
Tel: +39 0862 433735 Tel: +44 1904 325167
E-mail: davide.diruscio@univaq.it E-mail: dimitris.kolovos@york.ac.uk
Unparallel Innovation
Bruno Almeida
Rua das Lendas Algarvias, Lote 123
8500-794 Portimão
Portugal
Tel: +351 282 485052
E-mail: bruno.almeida@unparallel.pt

Page ii Version 1.0
Confidentiality: Public Distribution

27 December 2017

D3.4 Natural Language Components

Document Control

Version Status Date
0.1 Document outline 18 September 2018
0.2 Document outline Restructure 20 September 2018
0.3 Background Section Completed 23 October 2018
0.4 Readers Section Completed 25 October 2018
0.5 Metric Providers and Tools sections completed 14 November 2018
0.6 Introduction, Risks and Limitations, Conclusion sections completed 20 November 2018
0.7 WP3 Progress section completed 26 November 2018
0.8 Internal first draft completed 6 December 2018
0.9 Internal Partner Review Version 10 December 2018
1.0 Final QA version of the deliverable 27 December 2018

27 December 2017 Version 1.0
Confidentiality: Public Distribution

Page iii

D3.4 Natural Language Components

Table of Contents

1 Introduction 1

1.1 Overview . 1

1.2 Intentions . 1

1.3 Outcome . 1

2 CROSSMINER Component Overview 3

2.1 Natural Language Components . 3

2.1.1 Readers . 3

2.1.2 Metric providers . 5

2.1.3 Tools . 6

2.1.4 Knowledge Base . 6

2.2 Summary . 6

3 Readers and Reader Related Components 7

3.1 Delta Based Readers . 7

3.1.1 Bug Tracking Systems . 8

3.1.2 Communication Channels . 12

3.2 Non-Delta Based Readers . 16

3.2.1 Social Media . 16

3.2.2 Question & Answer Websites . 17

3.3 Summary . 18

4 Metric Providers 19

4.1 Transient Metrics . 19

4.1.1 Natural Language Processing Transient Metrics . 19

4.1.2 Bug Tracking Systems . 20

4.1.3 Newsgroups . 20

4.1.4 Forums . 21

4.1.5 Document Preparation . 21

4.2 Historic Metrics . 22

4.2.1 Bug Tracking Systems . 22

4.2.2 Newsgroups . 23

4.2.3 Forums . 24

4.2.4 Document Preparation . 24

4.3 Summary . 24

Page iv Version 1.0
Confidentiality: Public Distribution

27 December 2017

D3.4 Natural Language Components

5 Tools 25

5.1 Text Pre-Processing Tools . 25

5.1.1 HTML Parser . 26

5.1.2 Markdown Parser . 26

5.1.3 Code Detector . 26

5.2 Natural Language Processing Tools . 26

5.2.1 Core Natural Language Processing Tools . 27

5.2.2 Severity Classifier . 27

5.2.3 Emotion Classifier . 27

5.2.4 Request Reply Classifier . 27

5.2.5 Content Classifier . 28

5.2.6 Sentiment Analyser . 28

5.2.7 Thematic Clustering . 28

5.3 Index Manager . 28

5.4 Summary . 29

6 Risks and Limitations 30

7 Conclusions 31

7.1 Work Package 3: Progress . 31

7.2 Future Work . 35

27 December 2017 Version 1.0
Confidentiality: Public Distribution

Page v

D3.4 Natural Language Components

Executive Summary

Work package 3 (WP3) aims to contribute to CROSSMINER a collection of text mining components that al-
lows users and developers of Open source Software to analyse a diverse range of natural language sources:
bug tracking systems, communication channels, social media and question and answer websites. The com-
ponents developed in this work package will contribute to the enrichment of knowledge contained within the
GitHub enabling open source users and developers to gain an insight into the tools they use and improve the
performance and quality of the code they produce.

WP3 is constructed of 4 tasks that produce 5 deliverables. In Task 3.1 we have analysed text-representation
methods and developed new state-of-the-art machine learners for processing natural language. In Task 3.2
we explored methods for reading, searching and storing natural language sources associated with open source
projects.

This deliverable is the product built upon the foundations of work presented in D3.1, D3.2 and D3.3. This
document focuses on the work associated with Task 3.3 - the development of natural language components.
It presents details regarding all of the natural language (NL) components, readers, metric providers and tools
that are integrated (newly developed, updated or migrated) into CROSSMINER, discussing in detail their
role, importance and inter-relationship with other NL components. The document also provides information
concerning risks and limitations of the components developed. The report concludes by presenting the overall
progress of WP3, work completed, requirements that have been fulfilled and outstanding work.

Page vi Version 1.0
Confidentiality: Public Distribution

27 December 2017

D3.4 Natural Language Components

List of Abbreviations

Term Definition
API Application Programmable Interface
BTS Bug Tracking System
CC Communication Channel

PDE Plug-in Development Environment
JSON JavaScript Object Notation

NL Natural Language
NLP Natural Language Processing

NNTP Network News Transfer Protocol
OSS Open Source Software

REST Representational State Transfer

27 December 2017 Version 1.0
Confidentiality: Public Distribution

Page vii

D3.4 Natural Language Components

1 Introduction

Content sources related to open source software, such as GitHub, NNTP news groups and StackOverflow,
provide developers with a diverse range of useful information relating to specific open source projects. These
sources are rich with natural language. However, key knowledge relating to a project is often overlooked as it
is hidden away in vast amounts of text. The key to unlocking this hidden knowledge contained within text is
natural language processing (NLP).

With respect to CROSSMINER, this deliverable follows on from work completed in D3.2 and D3.3. It focuses
specifically on the development and integration of components related to the natural language processing capa-
bilities of the CROSSMINER platform. Developed components, such as readers, historic and transient metrics
and text processing tools are discussed in detail. Consequently, work completed as part of this deliverable
lays the foundations for Task 3.4, which is currently in progress and aims at developing a recommender that is
capable of suggesting code snippets and documentation relevant to the code being developed.

1.1 Overview

The remaining of this deliverable is organised into six sections. Section 2 provides an overview of CROSS-
MINER components, focusing on natural language. Sections 3, 4 and 5 discuss the readers, metric providers
and tools developed and integrated into CROSSMINER, respectively. Section 6 identifies the risks and limita-
tions of the work presented in this deliverable. Finally, Section 7 presents the conclusion of this deliverable as
well as reports on the current progress of WP3 and future & outstanding work.

1.2 Intentions

The aim of Task 3.3 is to develop and integrate natural language related components into CROSSMINER.
Fulfilment of the aim requires addressing the following use case and technological requirements presented in
Tables 1 and 2, respectively. Each requirement has an ID, a description and priority1.

1.3 Outcome

The outcomes of this deliverable are the components related to natural language that have been implemented
and integrated into CROSSMINER. The developed natural language components, such as readers, text pro-
cessing tools and metrics, are designed to be compatible with the CROSSMINER platform, the knowledge
base and can also be used to run bespoke workflows for knowledge extraction.

1Shall - must be fulfilled, Should - should be fulfilled, May - may be fulfilled

27 December 2017 Version 1.0
Confidentiality: Public Distribution

Page 1

D3.4 Natural Language Components

Ref Description Priority
U31 Able to search mailing-lists Shall
U32 Able to search forums Shall
U33 Able to search issues Shall
U37 Able to search IRC Shall
U38 Able to search simultaneously across all the data sources Shall
U39 Able to present the results by data source or globally for the project Shall
U40 Able to order the results by relevance May
U41 Able to search using regular expression patterns Shall
U42 Able to detect in the data sources text referring to one or several bugs Shall
U43 Able to detect in the data sources text referring to one or several commits Shall
U44 Able to extract sentiment analysis from the communication data sources Shall
U46 Able to detect similarities in messages so as to suggest answers Should
U47 Able to propose recommendations to improve community management Should
U48 Able to identify recurring problems identified by users Should
U52 Able to list unattended bugs Should
U53 Able to list unattended messages Should
U54 Able to create a cluster map for messages using Lingo or similar clustering technology Should
U55 Able to create a cluster map for bugs contents using Lingo or similar clustering technology Should
U60 Able to analyse level of user activity in issue trackers Shall
U61 Able to identify if a thread reached a conclusion and if it was positive Should

Table 1: WP3 Use Case Requirements related to Task 3.3

Ref Description Priority
D32 The NLP analysis component should record the sources used by the developer and use them

as a form of automatic feedback to improve its suggestions.
Should

D72 The other mining tools developed in WPs 2-4 shall expose a REST API that the cross-project
relationship miners can consume

Shall

D73 The other mining tools developed in WPs 2-4 shall expose project level metrics that cross-
project relationship miners can consume

Shall

Table 2: WP3 Technology Requirements related to Task 3.3

Page 2 Version 1.0
Confidentiality: Public Distribution

27 December 2017

D3.4 Natural Language Components

2 CROSSMINER Component Overview

The CROSSMINER platform, as shown in Figure 1, consists of numerous components that have been or will
be developed by CROSSMINER research and use case partners. When combined, the components provide
software developers with the capabilities to monitor, perform in-depth analysis and evidence-based selection
of open source software, and facilitate knowledge extraction from large open source software repositories. The
platform is capable of extracting knowledge associated with:

• Source Code
• System Configurations
• Cross-Project Relationships
• Communication in Natural Language

Combined, these sources provide CROSSMINER with a diverse range of knowledge that is related to various
aspects of the software development life-cycle, allowing developers to make informed decisions based upon
the results they are presented. The remaining of this document focuses specifically on components related to
natural language, which are marked with an orange border in Figure 1.

2.1 Natural Language Components

Natural language contains vital and potentially hidden information that can be exploited to assist developers
in making vital decisions surrounding open source software development. Consider the following scenario. A
developer is developing a new parser for XML and would like to compare two libraries, SAX and JAXB. The
developer is relatively inexperienced with this type of work and would benefit greatly by using a library that
has an active and helpful community. Both of these libraries are hosted on GitHub as open source projects and
are associated numerous entries on StackOverflow. To provide an insight into these two projects and present
the developer with relevant heuristics requires a series of interconnected components designed specifically
to perform tasks associated with reading textual information, processing it, computing suitable metrics and
enriching the original text with extra knowledge.

The objectives of natural language components developed for CROSSMINER are three-fold. Firstly, they
should be compatible with the CROSSMINER platform, so that they can be used to analyse the history of
given Open Source software projects to compute metrics that summarise the quality of support offered to
users over time. Secondly, to contribute to the CROSSMINER knowledge base, by enriching documents with
extra information that facilitates efficient faceted search. Thirdly, to be used as plug-ad-play parts of bespoke
knowledge extraction workflows, in the context of Work Package 5. CROSSMINER NLP components are of
three categories: readers, metric providers, and tools. A detailed description of each component type and its
role in CROSSMINER is presented in the remaining of this section.

2.1.1 Readers

A reader is the first component in a typical natural language processing workflow. The aim of a natural
language reader in CROSSMINER is to retrieve textual information related to an open source software project,
along with metadata associated with it. CROSSMINER supports four types of sources of textual information:
Bug Tracking Systems, Communication Channels, Social Media and Question and Answer websites.

27 December 2017 Version 1.0
Confidentiality: Public Distribution

Page 3

D3.4 Natural Language Components

Figure
1:C

R
O

SSM
IN

E
R

C
om

ponentD
iagram

Page 4 Version 1.0
Confidentiality: Public Distribution

27 December 2017

D3.4 Natural Language Components

Readers have been developed for a variety of different sources, meaning that data retrieved is heterogeneous.
A vital function within each reader is to restructure the data in such a way that it can be consumed by various
other components within the natural language workflow in CROSSMINER. Depending on the source type,
information retrieved by the readers can be passed either to metric providers or to natural language tools. Both
paths result in enrichment of the knowledge base. A detailed description of the readers in this deliverable is
found in Section 3.

2.1.2 Metric providers

Natural Language metric providers compute a diverse range of heuristics based upon the origin of the textual
information2. In CROSSMINER, metrics are computed for every day that a project is being evaluated. For
every day of the project, readers produce a delta, i.e. the set of changes that occurred in a particular communi-
cation means on that day. Changes may among others refer to new messages, updated bug reports, comments
and thread status changes. During computation, a metric may rely upon information contained within the delta,
results from other metrics and historical information from previous dates or days.

There are two types of metric providers in CROSSMINER. For a given project, transient metrics, as the name
suggests, compute metrics for a particular day, overwriting the outcome that was computed previously, for the
previous day of the project. Historic metrics are persistent, keeping a record of the changes for each day the
project is evaluated. From a functional perspective, metric providers in CROSSMINER are organised into two
tier stack as shown in Figure 2. In general, historic metrics enrich the knowledge base with knowledge relating
to a project’s history, and have dependencies on transient metrics in order to do this. This dependency rela-
tionship between the two types of metric providers is vital during the execution of the platform. A transient
metric is only triggered during execution of the analysis components in CROSSMINER, if it is associated as
a dependency with a historic metric. Without this dependency transient metrics will not be triggered during
runtime. As a result of this architectural requirement, there are cases where historical metrics have been inte-
grated into CROSSMINER with the sole purpose to trigger specific transient metrics. A detailed description
of the metric providers associated with the processing of natural language and enrichment of the knowledge
base in CROSSMINER is available in Section 4.

Metric Providers

Historic Metrics

Transient Metrics

Source Type
Transient Metrics

Natural Language Tools
Transient Metrics

Document Preparation
Transient Metrics

Source Type
Historical Metrics

Document Preparation
Historical Metric

Figure 2: Metric Provider Stack

2There are some exclusions to this definition, however this is the general rule.

27 December 2017 Version 1.0
Confidentiality: Public Distribution

Page 5

D3.4 Natural Language Components

2.1.3 Tools

Natural language tools provide various capabilities that relate to either processing or indexing of knowledge
in the CROSSMINER Knowledge Base. Once again depending on the origin of source data, tools can be
triggered either by metric providers or by readers directly. An in-depth presentation of the tools developed and
integrated in CROSSMINER is given in Section 5.

2.1.4 Knowledge Base

The knowledge base represents the final stage of the natural language processing workflow in CROSSMINER.
The Knowledge Base consists of components that store knowledge that has been previously computed by met-
ric providers and specific tools. For simplicity, the knowledge base consists of an instance of a MongoDB
database and an ElasticSearch cluster. Knowledge contained within the knowledge base is presented to the
users of the CROSSMINER platform, assisting them in the development of open source software. Although,
the knowledge base and its development is not part of Work Package 3, the indexing capabilities for CROSS-
MINER are related to this work, as stated among the work package requirements, in Section 1.2.

2.2 Summary

This section provides an overview of the CROSSMINER platform. Since Work Package 3 is responsible
for natural language processing in CROSSMINER, the latter part of this section discussed the role of vari-
ous types of natural language components developed, the relationship of these components to the rest of the
CROSSMINER platform and the importance of natural language processing for CROSSMINER. The follow-
ing sections provide further details about each natural language component.

Page 6 Version 1.0
Confidentiality: Public Distribution

27 December 2017

D3.4 Natural Language Components

3 Readers and Reader Related Components

As discussed in D3.2, OSSMETER utilised a delta-based architecture for its readers and retrieved information
from two distinct types of sources: bug tracking systems and communication channels. As part of Task 3.3,
we introduced an additional, non-delta based reader architecture. This enables the CROSSMINER platform to
support a further two types of sources, i.e. social media and questions & answer websites, for mining natural
language, as shown in Figure 3. Furthermore, eight new readers have been developed, three were updated and a
further six were migrated from OSSMETER. Our efforts now allow CROSSMINER to ingest natural language
information from a total of 17 sources3.

Reader

Bug Tracking Systems Communication
Channels Social Media Question & Answers

Delta Based Non-Delta BasedWorkflow:

Source Type:

Figure 3: Readers in CROSSMINER

3.1 Delta Based Readers

All delta-based readers in CROSSMINER follow the same workflow illustrated in Figure 4. Information about
an open source software project is retrieved from bug tracking systems or communication channels. The
distinct functionality of delta-based readers is the ability to compute metrics based upon deltas. A delta is the
sum of all activity that occurred on a particular day on a communication means, forming a time-line of historic
activity as shown in Figure 5. Deltas are used to compute various metrics that enrich the knowledge contained
in the knowledge base.

Regardless of the source type, each reader produces deltas in the same way. It begins by calculating the first
date of activity for a particular project on a particular communication means. The calculation varies slightly
depending on the source type. For example, bug tracking systems use the date of the first issue, whereas
communication channels may use the first post in a forum or message posted in a newsgroup. The first date
provides the CROSSMINER platform with the point in time, which can be incremented sequentially to produce
deltas until the current day of execution.

Deltas contain lists of objects that represent events. For example, a delta can contain a new issue or update to
an existing issue or comment on a bug tracking system. The information that is contained within the delta is
then utilised by numerous metric providers to compute various heuristics associated to the source type, which
in turn enriches the knowledge base. The remaining of this subsection provides details about particular delta-
based readers in CROSSMINER and identifies those that are new, those that were updated and those that were
migrated from OSSMETER.

3details of each of the 17 sources supported by CROSSMINER can be found throughout the remainder of this section

27 December 2017 Version 1.0
Confidentiality: Public Distribution

Page 7

D3.4 Natural Language Components

Reader Transient
Metric

Historic
Metric

Knowledge Base

Indexer

MongoDB

Elasticsearch

Index

Source

Figure 4: Delta Based Reader Workflow

Reader
Transient

Metric

Historic

Metric

Knowledge Base

Indexer

MongoDB

Elasticsearch

Index

Source

Reader Tools

Knowledge Base

Indexer

Elasticsearch

Index

Source*

* Source can either be online or adump

Reader

Bug Tracking Systems Communication
Channels Social Media Question & Answers

Delta Based Non-Delta BasedWorkflow:

Source Type:

Reader

Processing Method

Non-Delta Based

Delta Based

Source Type

Bug Tracking Systems

Communication
Channels

Social Media

Question & Answers

0 1 32 4Day :

Deltas :

Transient Metric

Knowledge Base

Request
Index Manager

Elasticsearch

Index Response

Delta

Figure 5: Delta

3.1.1 Bug Tracking Systems

Bug tracking systems (BTS), also known as issue trackers, assist developers in managing “bugs” throughout
the lifetime of a software project. They are also used as channels that allow users of a software product to
express ideas for feature enhancements or ask for technical support. This type of information is processed and
utilised by metrics to measure characteristics such as how active development is, the number of bugs and the
response time. The metrics enrich the knowledge base to provide suggestions such as solutions to issues faced
by OSS developers.

In CROSSMINER, a BTS reader mines data related to issues and comments posted by users, as a minimum.
Some BTS readers may also include additional elements unique to that particular system. These will be
discussed in further detail where relevant.

As part of Task 3.3, we introduced support for two new bug tracking systems, updated three existing ones and
migrated three from OSSMETER. The CROSSMINER platform now supports nine bug tracking systems. A
summary of each bug tracking system supported by CROSSMINER is presented in Table 3.

Page 8 Version 1.0
Confidentiality: Public Distribution

27 December 2017

D3.4 Natural Language Components

Source Status Package name
Bitbucket Updated org.eclipse.scava.platform.bugtrackingsystem.bitbucket
Bugzilla Updated org.eclipse.scava.platform.bugtrackingsystem.bugzilla
GitHub Updated org.eclipse.scava.platform.bugtrackingsystem.github
GitLab New org.eclipse.scava.platform.bugtrackingsystem.gitlab
JIRA Migrated org.eclipse.scava.platform.bugtrackingsystem.jira
Mantis BT New org.eclipse.scava.platform.bugtrackingsystem.mantis
Redmine Migrated org.eclipse.scava.platform.bugtrackingsystem.redmine
Sourceforge Migrated org.eclipse.scava.platform.bugtrackingsystem.sourceforge

Table 3: Bug Tracking System Readers

3.1.1.1 New Bug Tracking System Readers

As mentioned earlier, CROSSMINER introduced support for two popular bug tracking systems: GitLab and
Mantis Bug Tracker. With regards to the use case partners, both these new readers are to be utilised during the
evaluation of several use cases.

GitLab is a web based application for all aspects of DevOps lifecycle and includes a bug monitoring (tracking)
system. We have designed a delta-based reader in collaboration with YORK, who have developed RESTMule,
an automatic client generator for sources with Open API specifications. Currently RESTMule is not ready to
support GitLab, thus the final implementation of this reader will be completed shortly. The reader will mine
information related to issues and comments. The GitLab reader will also support two forms of authentication:
OAuth2 tokens4 and Personal Access Tokens5. It is expected that the GitLab reader will require access to the
project parameters shown in Table 4. It should be noted that they may change in future versions of the GitLab
API.

Parameter Type Description Example
OAuth2 Token String OAuth2 Token used for authen-

tication
6Ji3tcrZfNQ3gna7CiE8JSLSiO6FiOIi

Personal Access Token String Personal Access Token used for
authentication

6Ji3tcrZfNQ3gna7CiE8JSLSiO6FiOIi

Project String Name of the GitLab Project Crossminer

Table 4: GitLab: Project Mining Parameters

Mantis Bug Tracker is a web-based, open source bug tracking system developed in PHP. It has been
made available in several Linux distributions, Mac OSX and Windows. The reader integrated into CROSS-
MINER was developed using OKHTTP and Jackson6. As with many other bug tracking system readers, this
reader can request and process information in issues and comments posted by users that relate to a given
open source project. The reader accesses this information via authenticated requests made to the Mantis Bug
Tracker REST API. Authentication requires generating an API token, which users can do via “Create API
Token” located under “My account section” on the website of Mantis. The level of access a user has to in-
formation is subjective to the privileges they were assigned by the system administrator. Please note that in
order for closed issues to also be included and processed by CROSSMINER a configuration setting located in

4GitLab OAuth2 Tokens - docs.gitlab.com/ee/api/#oauth2-tokens
5GitLab Personal Access Tokens - docs.gitlab.com/ee/api/#personal-access-tokens
6More information regarding these libraries can be found in D3.2

27 December 2017 Version 1.0
Confidentiality: Public Distribution

Page 9

docs.gitlab.com/ee/api/#oauth2-tokens
docs.gitlab.com/ee/api/#personal-access-tokens

D3.4 Natural Language Components

<path_to_install_directory>\config\config_inc.php had to be modified. The following line had to be added to
the file or replace any previously assigned value: $g_hide_status_default = META_FILTER_NONE;

The project information shown in table 5 has to be provided to the CROSSMINER platform to mine informa-
tion related to a specific project contained within a Mantis Bug Tracker instance.

Parameter Type Description Example
project_id String the numerical identifier for the

project
1

host String URL that points to the Mantis
Bug Tracker instance

http://localhost:8888/mantis/

token String A generated string consisting of
32 characters

6Ji3tcrZfNQ3gna7CiE8JSLSiO6FiOIi

Table 5: Mantis Bug Tracker: Project Mining Parameters

3.1.1.2 Updated Bug Tracker Readers

As stated in D3.2, some OSSMETER readers required updating to address issues related to outdated or de-
preciated APIs. Three readers, Bitbucket, Bugzilla and GitHub, received significant modifications to their
source code from their OSSMETER counterpart to maintain their mining functionality and compatibility with
CROSSMINER.

Bitbucket: In deliverable 3.2, we stated that the Bitbucket reader would be migrated since our initial testing
showed that it was operational. However, since then, Bitbucket has been going through a transitional phase
with regards to its REST API. In OSSMETER, this reader utilised both version 1 and version 2 of the Bitbucket
REST API. It appears that Bitbucket is discontinuing support for version 1 of API, meaning that eventually the
end points of version 1 will be no longer available. Since the reader’s functionality depended on certain version
1 endpoints that were no longer available, the reader would crash as data it was expecting was no longer being
returned. To address these problems, we updated all the methods that made calls to version 1 endpoints to their
version 2 equivalent and made modifications to the serialisation and deserialisation functionality to support the
new information that was introduced.

For the reader to make requests to the Bitbucket REST API, a user must be authenticated. The Bitbucket reader
in CROSSMINER supports basic authentication (username and password). The following project information
shown in Table 6 has to be provided to CROSSMINER to mine information about a specific project contained
in a Bitbucket repository.

Parameter Type Description Example
User String The name of the user Bob
Repository String The name of the repository CROSSMINER
Login String The user name used to log into

Bitbucket
Cross

Password String The password used to log into
Bitbucket

M1ner

Table 6: Bitbucket: Project Parameters

Page 10 Version 1.0
Confidentiality: Public Distribution

27 December 2017

D3.4 Natural Language Components

Bugzilla: in D3.2, we mentioned that the reader developed for Bugzilla in OSSMETER used a depreciated
version of the Bugzilla API, meaning that some functionality of the reader would no longer work and therefore
required updating. Since Bugzilla 5.0, the Mozilla Foundation has switched to using a REST API. The Bugzilla
REST API also adheres to the Open API specification7. This enables the use of RESTMule developed by our
partners from the University of York, to provide the foundations for the updated Bugzilla reader in CROSS-
MINER. However, currently RESTMule is not ready to support Bugzilla, thus the final implementation of this
reader will be completed shortly. In the meantime the original Bugzilla reader developed in OSSMETER has
been made available in CROSSMINER.

The Bugzilla reader in CROSSMINER is capable of mining information related to issues, comments and
attachments. This will remain the same in the RESTMule variant to maintain the consistency across both
implementations. The reader currently supports two authentication methods: basic authentication (username
or password) or token authentication.

Presented in Table 7 are the project parameters related to Bugzilla. Note that at least one authentication method
has to be provided in order to make authenticated requests to the repository.

Parameter Type Description Example
Username String The user name used to log into

Bugzilla
Cross

Password String The password used to log into
Bugzilla

M1ner

Product String Refers to a product contained
within Bugzilla

Crossminer

Component String Refers to a specific component
within a project

Bugzilla Reader

Table 7: Bugzilla: Project Parameters

GitHub: Similar to the Bugzilla reader, the API used in the OSSMETER version of the GitHub reader used
eGit API version 4.1, which has undergone several improvements since its use in OSSMETER. Furthermore,
GitHub has also revised its REST API (currently version 3) with several improvements and also made it adhere
to the Open API specification. Hence why the resilient client generator was used to provide the foundations
of the GitHub reader in CROSSMINER. The GitHub reader in CROSSMINER mines information related to
issues, pull requests and comments posted by users; this was to maintain consistency with the data mined
by the reader implemented in OSSMETER. The GitHub reader supports two types of authentication: basic
authentication (username or password) or token authentication.

Although GitHub enforces a restriction on the number of calls that can be made per hour, the capabilities of the
resilient client generator ensures that this is managed correctly and will not negatively impact CROSSMINER.
The GitHub reader is associated with the following project parameters presented in Table 8.

7More information regarding Open API specification and the benefits it provides can be found in D3.2

27 December 2017 Version 1.0
Confidentiality: Public Distribution

Page 11

D3.4 Natural Language Components

Parameter Type Description Example
User String The name of the user Bob
Login String Username used to access

GitHub (basic authentication)
Cross

Password String Password used to access GitHub
(basic authentication)

Miner

Token String A unique token used to make
authenticated requests token au-
thentication

6ea3a349d921f6d33dc745df44d2487db3c

Repository String The name of the repository crossminer
Owner String the username of the user that

owns the repository
Bob2020

Table 8: GitHub: Project Parameters

3.1.1.3 Refactored Bug Tracker Readers

The readers listed below received minor refactoring and were tested to ensure compatibility with CROSS-
MINER during their migration from OSSMETER. The modifications did not concern their original function-
ality. Each of the readers mines information about issues and comments. The project parameters required by
CROSSMINER for each source are presented in Table 9.

Source Parameter Type Description Example

Jira
Login String User-name used to access Jira Cross
Password String Password used to access Jira M1ner
Project String The name of the project crossminer

Redmine

Login String User-name used to access Jira Cross
Password String Password used to access Jira M1ner
Name String Name of the user Bob
Project String The name of the project crossminer

Sourceforge URL String A url that represents the bugs of
a project

http://sourceforge.net/rest/p/ soapui/bugs

Table 9: Migrated Bug Tracking Systems Readers: Project Parameters

3.1.2 Communication Channels

Within the context of CROSSMINER, a communication channel refers to an online community where various
discussions related to OSS take place. Communication Channels are used to provide information for calcu-
lating metrics that measure various factors relating to a community of users, such as how active and reactive
a community is, or estimate the general sentiment about specific discussions, or provide historic information
concerning bugs and their respective solutions.

In OSSMETER, communication channels existed in two forms. Network News Transfer Protocol (NNTP)
articles and SourceForge discussions. Due to the requirements from our use case partners, we extended the
capabilities of CROSSMINER to also support forums as a new type of communication channel. From the
platform’s perspective, forums are handled differently due to their “threaded” nature and the information they

Page 12 Version 1.0
Confidentiality: Public Distribution

27 December 2017

D3.4 Natural Language Components

contain. This required additional functionality to be added to the Communication Channel Delta8 and the
addition of new metrics, which will be discussed in further details in section 4.

As shown in Table 10, CROSSMINER is capable of ingesting information from six Communication Channels;
three readers are newly developed, two were refactored and one was migrated from OSSMETER.

Source Status Package name
Eclipse Forums New org.eclipse.scava.platform.communicationchannel.eclipseforums
IRC New org.eclipse.scava.platform.communicationchannel.irc
NNTP Refactored org.eclipse.scava.platform.communicationchannel.nntp
Sourceforge Refactored org.eclipse.scava.platform.communicationchannel.sourceforge
Sympa Emails New org.eclipse.scava.platform.communicationchannel.sympa
Zendesk Migrated org.eclipse.scava.platform.communicationchannel.zendesk

Table 10: Communication Channel Readers

3.1.2.1 New Communication Channel Readers

The following readers for communication channels were developed for CROSSMINER.

Eclipse Forums: Eclipse Forums are a centralised repository for people who develop and use Eclipse-based
tools to discuss technical matters. They are organised in the following structure:

• Category - is a collection of related forums.
• Forum - is a collection of related topics
• Topic - is a collection of related posts.
• Post - is a message associated with a specific topic.

The reader integrated into CROSSMINER was developed using OKHTTP and JACKSON libraries. Given a
specific forum, the Eclipse Forums reader is capable of extracting all of the posts associated with topics that
are related to the forum. Accessing this information requires requests to be made to the Eclipse Foundation
REST API. Eclipse enforces a rate limit of 1,000 requests per hour for both authenticated9 and anonymous
requests.

The reader, from an authentication perspective, supports both anonymous and authenticated requests. For
authenticated requests, Eclipse requires a OAuth2 token. This can be generated following the instructions pro-
vided by the Eclipse Foundation10. The reader in its current form does not request information from protected
resources, therefore its functionality is not impacted regardless of the availability of a token. However, authen-
ticated users may request to increase the number of calls they are able to submit per hour, subject to Eclipse
approval, allowing more data to be consumed by CROSSMINER per hour.

The project parameters associated with the Eclipse Forums reader are presented in Table 11.

8A component responsible for managing Communication Channel Deltas in CROSSMINER
9Note the rate limit can be extended, by contacting the appropriate eclipse representative. See https://api.

eclipse.org/docs for more information.
10Eclipse Forums OAuth2 token generation - https://api.eclipse.org/docs/auth

27 December 2017 Version 1.0
Confidentiality: Public Distribution

Page 13

https://api.eclipse.org/docs
https://api.eclipse.org/docs
https://api.eclipse.org/docs/auth

D3.4 Natural Language Components

Parameter Type Description Example
Client Id String Client Id (optional) G12DrqtW6qPuXC88Oorqc4rt4Xw5
Client Secret String Client secret (optional) wpl9NBtLn2KxA4234mPxWoDbb5I
Forum Id String The unique id of the eclipse forum 305

Table 11: Eclipse Forums: Project Parameters

Internet Relay Chat (IRC) is an application for user communication in textual format. The chat is based
on a server and client model. Each user uses an IRC client, either locally installed or web-based. All client
applications are connected to a server. A user message is sent through the client application to the server and
in turn to other user clients. IRC is mainly designed for group communication organised in channels, but also
supports user to user private messaging. Communication messages can be logged by the intervening server. In
the log, each message is timed and marked with the sender’s username.

IRC used to be very popular in the 1990s and early 2000s. Nowadays, most users have moved to modern social
media. However, IRC is still used for communication in software communities and organisations. Analysing
IRC communication messages about OSS can inform about the quality of support offered to users. As analysing
IRC logs is of interest to our use case partners, we developed a delta based reader of archived IRC logs. The
reader assumes that an archive of IRC logs stored locally and does not use specialised libraries.

Parameter Type Description Example
Log Archive String The Log archive to be processed Crossminer_irc.log
Channel String The specific IRC channel which will be the focus Readers

Table 12: IRC: Project Parameters

Sympa: is a mailing list management software. Similarly to most email servers, Sympa stores all emails sent
by users in archives. The archive contains a folder for each year of activity, which contains a folder for each
month, which in turn contains a folder for each day of that month. These day folders contain a text file for
every email sent on that day. Emails are stored following the Multipurpose Internet Mail Extensions (MIME)
format.

Parsing and analysing Sympa email archives is of interest to our use case partners. Thus, we developed a
reader for Sympa archives, that can read all emails in an archive, or just the emails of a particular day. In
succession, emails can be processed using any of the natural language processing components of the CROSS-
MINER platform to compute quality metrics or searched by the users via the Eclipse IDE plugin, as part of
the knowledge base. The reader uses javax-mail, apache commons mail and apache commons net.

Parameter Type Description Example
Log Archive String The Log archive to be processed Crossminer_emails.log

Table 13: Sympa: Project Parameters

Page 14 Version 1.0
Confidentiality: Public Distribution

27 December 2017

D3.4 Natural Language Components

3.1.2.2 Refactored Communication Channel Readers

As mentioned earlier, three readers were migrated from OSSMETER. The first reader is capable of accessing
newsgroups that utilise the Network News Transfer protocol (NNTP), the second processes information from
Sourceforge discussions and the third one from ZenDesk. Each of these readers was subjected to testing after
refactoring and was not modified to it’s source code for use within CROSSMINER. Presented in the table
below are the project parameters for each of the readers.

Source Parameter Type Description Example

NNTP

Authentication Re-
quired

String Represents a flag (this is
dependent on the NNTP
server)

true

Username String User-name used to access
the news group

Cross

Password String Password used to access the
news group

M1ner

Port Int Port number used to access
the news group

1234

Description String Description of the news-
group

This is a news group for the
CROSSMINER project

Name String Name of the user Bob
Interval Int Polling interval in seconds 11 5
URL String A url which points to the

NNTP server
nntp://host.domain/newsgroup

News group name String Name of the news group CROSSMINER
Sourceforge URL String A Url that points to discus-

sions hosted on Sourceforge
http://sourceforge.net/rest/p/
gimponosx/discussion/

Zendesk Authentication Re-
quired

String Represents a flag (this is de-
pendent on the Zendesk con-
figuration)

true

Username String User-name used to access
Zendesk

Cross

Password String Password used to access
Zendesk

M1ner

Port Int Port number used to access
Zendesk

1234

Description String Description of the project
hosted in Zendesk

This is the CROSSMINER
project

Name String Name of the user Bob
Interval Int Polling interval in seconds 12 5
URL String A URL which points to the

Zendesk server
http://zendesk.com/Crossminer

News group name String Name of the news group in
Zendesk

CROSSMINER

Table 14: Migrated Communication Channel Systems Readers: Project Parameters

12Polling interval is the period of time between the end of the time-out period of the last retry or completion of a
network request, and the next request for data on the network.

27 December 2017 Version 1.0
Confidentiality: Public Distribution

Page 15

D3.4 Natural Language Components

3.2 Non-Delta Based Readers

Non-delta based readers aim to enrich the knowledge base with further contextual information regarding a
specific open source project. Due to the large variety of data available on “Social Media” and “Question &
Answer websites” it is difficult to process information in daily deltas . Non-delta based readers utilise queries
to focus on information relevant to the requirements of the end user. The information is then processed by the
workflow shown in Figure 6. Indexed information is searchable by the developers at the time of development
through a specialised Eclipse plugin.

A potential issue that non-delta based readers face is that the size of data returned by the query can be large
and may take a considerable amount of time to process. To alleviate this delay, CROSSMINER users can use
computational resources available on other nodes of their network. For this purpose we utilised Crossflow,
a tool that enables parallel and distributed execution of workflows, where nodes within the workflow can
be tailored to meet specific requirements. Crossflow was developed by the University of York. We have
worked closely with our partners to design a suitable workflow capable of enriching the ElasticSearch cluster
contained within the knowledge base and to ensure that our natural language components are compatible with
the requirements of Crossflow.

non

Crossflow

Reader Tools

Knowledge Base

Indexer

Elasticsearch
Index

Source*

Figure 6: Non-Delta Based Workflow

3.2.1 Social Media

From a software perspective, social media can provide an insight into how a community perceives a project.
This perception is an important factor that developers may wish to take into consideration when selecting
which projects to use. As part of this deliverable we integrated support for Hacker News into CROSSMINER.

Hacker News13 is a social media website mainly focusing on sharing news related to technology and re-
lated discussions. In Hacker News, users can also post questions, job offers, polls, among others; these can
be discussed too through comments. As any social media website, it allows users to upvote and downvote
publications. Access to posts and comments is free to all users, either subscribed or not.

Hacker News has two REST APIs: one developed by the owners of Hacker News and one provided by the
search engine Algolia. The former14 offers access to the data posted in Hacker News almost on real time by
using Firebase15, Google’s mobile platform. This API allows to access all information available in Hacker
News by publication ID, where publications are either posts or comments. Without knowing the ID of a
publication, only a limited number of publications is accessible, such as the most recent posts or the most

13news.ycombinator.com
14github.com/HackerNews/API
15firebase.google.com

Page 16 Version 1.0
Confidentiality: Public Distribution

27 December 2017

https://news.ycombinator.com/
https://github.com/HackerNews/API
https://firebase.google.com/

D3.4 Natural Language Components

upvoted ones. The API does not require authentication and, to the best of our knowledge, it does not have any
query quota.

The second API16, developed by the search engine Algolia, is similar to the one designed by the owners of
Hacker News, with extra functionality that allows to search publications. As mentioned previously, to access a
publication in Hacker News using the first API, it is necessary to know its ID. This is not necessary on Algolia’s
API. As it indexes Hacker News on real time, natural language queries are possible. This API to Hacker News
is back-ended on the original API, therefore it allows using all its functionality in addition to natural language
queries. Algolia’s API does not require authentication. However, there is a quota of 10, 000 queries per hour
per IP.

We have developed a reader for Hacker News using OKHTTP and Jackson libraries. The REST API used is the
one provided by Algolia, as it is more advanced that the original one and offers extra features. The reader has
three modes. The first mode allows users to access the Hacker News API simply and easily, through a Builder
Pattern. Users can submit queries, retrieve specific elements and filter them. The second mode allows to
retrieve all elements on Hacker News in sequential order. The third mode allows to download the publications
that match a specific query and their comments. The last two models are useful in populating CROSSMINER’s
knowledge database.

3.2.2 Question & Answer Websites

Unlike social media sources, Question & Answer (Q&A) websites consist of questions and answers derived
from a community of users. Users of these websites seek and/or disseminate knowledge to a community to
help others. For CROSSMINER this information can be exploited to help developers start new projects faster,
by seeking answers to questions about the use of particular libraries. As part of Task 3.3, we integrated support
for StackOverflow into CROSSMINER.

StackOverflow17 is a crowd-sourced community, governed by rules similar to those of social media, where
users can post questions regarding software development and also reply to the questions of other users. Users
can comment, upvote and downvote questions and answers. StackOverflow covers a wide range of program-
ming languages and libraries used by programmers.

StackOverflow offers a REST API to access the information posted on its website. As we expect CROSS-
MINER users to submit many queries to StackOverflow, we have decided to create a reader that will use
dumps provided by StackOverflow’s parent company, StackExchange18. In this way, CROSSMINER can after
index StackOverflow locally and offer real time access to questions and answers without any restrictions, such
as query quotas.

The reader has been developed using a Builder Pattern, meaning that CROSSMINER users can define which
StackOverflow elements to index from the dump. For example, users can decide to index questions, answers,
accepted answers, posts posted between certain dates, or posts regarding a specific tags19, only. As Stack-
Overflow dumps are very large XML files, we have decided to back-end the reader with Java’s SAX parser.
Specially designed for large files, SAX efficiently accesses a file line by line, instead of loading the entire file
in memory.

16hn.algolia.com/api
17stackoverflow.com
18Dumps can be found in: archive.org/details/stackexchange. A new dump is released every three months, approxi-

mately.
19Tags are textual elements that denote a topic on StackOverflow, e.g. Java, C++ and parsing.

27 December 2017 Version 1.0
Confidentiality: Public Distribution

Page 17

https://hn.algolia.com/api
https://stackoverflow.com/
https://archive.org/details/stackexchange

D3.4 Natural Language Components

It should be indicated, that the new reader can be used on other dumps provided by StackExchange, as it is
using a standardised format. Using this tool, CROSSMINER users can read dumps from any StackExchange
website, such as SuperUser20 and ServerFault21.

3.3 Summary

This section presented a comprehensive discussion about all readers that were developed and migrated as
part of Task 3.3 to access natural language information for use within CROSSMINER. We have developed
8 new readers in total, updated 3 readers and migrated 6 from OSSMETER. Additionally, we extended the
functionality of the Communication Channel delta to support forums. With the introduction of the non-delta
based reader architecture, the CROSSMINER platform now has the ability to enrich the knowledge base with
further contextual information relating to open source projects, in addition to the previously existing delta-
based enrichment. We also introduced support for two new sources of information in the form of social media
and question & answer websites. Overall CROSSMINER is capable of mining textual information from a total
of 17 different sources.

20superuser.com
21serverfault.com

Page 18 Version 1.0
Confidentiality: Public Distribution

27 December 2017

https://superuser.com/
https://serverfault.com/

D3.4 Natural Language Components

4 Metric Providers

As discussed in Section 2, metrics compute heuristics that enrich the knowledge base with useful information,
that OSS developers can use to make informed decisions throughout the stages of software development.
The purpose of this section is to present all metrics integrated into CROSSMINER as part of Task 3.3. The
remaining of this section is organised into 2 subsections each discussing transient metrics and historic metrics,
respectively. Each metric is marked with a status label from the following:

• New: A new development for CROSSMINER
• Updated: Metric received modifications to include preprocessing of text.
• Upgraded: Metric received upgrades as a consequence of developments since D3.3
• Migrated: Migrated from OSSMETER

4.1 Transient Metrics

As their name suggests, transient metrics are used to calculate heuristics that are associated with a particular
period in time, i.e. a day in the case of CROSSMINER. They are stored temporarily within the knowledge base
and their output is passed as parameters in the calculation of other transient and historic metrics. Transient
metrics, with regards to this deliverable, are related to five areas: Bug Tracking Systems, Newsgroups, Forums,
Natural Language Processing Tools and Document Preparation.

4.1.1 Natural Language Processing Transient Metrics

The transient metrics presented in Table 15 are associated with various natural language tools integrated into
CROSSMINER. These metrics process the input text and return either a classification value or a conversion
of text, which is in turn useful for the transient metrics that compute heuristics from Bug Tracking Systems,
Newsgroups and Forums.

Metric Status Description
Code detector New This metric determines which parts of a bug comment or a newsgroup

article are code and natural language
Plain Text Processing New This metric pre-processes each bug comment, article or forum post into

a split plain text format
Request Reply Classifica-
tion

Upgraded This metric computes if each bug comment, newsgroup article or forum
post is a request of a reply. It is based on the corresponding classifica-
tion tool described in D3.3

Sentiment Classification Upgraded This metric computes the sentiment of each bug comment, newsgroup
article or forum post. Currently it uses an upgraded version presented
in D3.3

Emotion Classification Upgraded This metric indicates the emotions expressed in each bug comment,
newsgroup article or forum post. We have replaced the tool that was
used in OSSMETER with the one presented in D3.3

Severity Classification Updated This metric computes the severity level of each bug or thread.
Topic Classification Updated This metric computes a summary of topics dicussed in a collection of

documents and the number of documents related to each topic

Table 15: CROSSMINER Transient Metrics related to Natural Language Processing

27 December 2017 Version 1.0
Confidentiality: Public Distribution

Page 19

D3.4 Natural Language Components

4.1.2 Bug Tracking Systems

Presented in Table 16 are the transient metrics available in CROSSMINER.

Metric Status Description
Active Users Migrated This metric keeps track of the users that submitted bug comments in the

last 15 days
Bug Metadata Migrated This metric holds various metadata of a bug header, i.e. priority, status,

operation system and resolution
Number of Comments Migrated The number of bug comments over time
Content Classes Migrated Identifies content classes in bug comments
Daily Requests & Replies Migrated This metric stores the number of comments, requests and replies for

each day of the week.
Emotions Migrated Identifies emotions expressed in bug comments
Hourly Requests & Replies Migrated This metric stores the number of articles, requests and replies for each

hour of the day.
Number of New Bugs Migrated Tracks the number of new bugs over time
Number Request & Replies Migrated Computes for each bug whether it is answered. If yes, it also computes

the response time

Table 16: CROSSMINER Transient Metrics related to Bug Tracking Systems

4.1.3 Newsgroups

The transient metrics shown in Table 17 are the heuristics supported by CROSSMINER for Newsgroups.

Metric Status Description
Active users Migrated This metric keeps track of the users that submitted news in the last 15

days.
Articles Migrated Tracks the number of articles
Content Classes Migrated Identifies content classes in Newsgroup Articles
Daily Requests & Replies Migrated This metric stores the number of articles, requests and replies for each

day of the week
Emotions Migrated Identifies the emotions expressed in Newsgroup articles
Hourly Requests & Replies Migrated This metric stores the number of articles, requests and replies for each

hour of the day
Sentiment Migrated Computes sentiment at the beginning of each thread, at its end, and on

average
Threads Migrated This metric holds information for assigning newsgroup articles to

threads. The threading algorithm is executed from scratch every time.
Thread Request & Replies Migrated The metric identifies for each thread whether it is answered. If yes, it

also computes the response time

Table 17: CROSSMINER Transient Metrics related to Newsgroups

Page 20 Version 1.0
Confidentiality: Public Distribution

27 December 2017

D3.4 Natural Language Components

4.1.4 Forums

Due to the unique nature of Communication Channel sources we decided to handle and compute transient
metrics associated with forums differently than Newsgroups. In particular, forums posts are already threaded
and there is no guarantee that they directly relate to a bug. The integration of these components has been
delayed due to problems discovered with the data returned by Eclipse Forums not matching what was displayed
on-line. Therefore, we have chosen not to integrate the metrics shown in Table 18 before testing them properly
to ensure accuracy. The metrics are subject to change depending on the outcome of testing.

Metric Status Description
Active Users New This metric keeps track of the users that submitted news comments in

the last 15 days
Number of posts New The number of posts over time
Content Classes New Identifies content classes in posts
Daily Requests & Replies New This metric stores the number of comments, requests and replies for

each day of the week
Emotions New Identifies the emotions expressed in forum posts
Hourly Requests & Replies New This metric stores the number of forum posts, requests and replies for

each hour of the day
Number of New Posts New Tracks the number of new forum posts over time
Number of New Forum Top-
ics

New Tracks the number of new forum topics

Number Request & Replies New Indicates for each forum post whether it is answered. If yes, it also
computes the response time

Table 18: CROSSMINER Transient Metrics related to Forums

4.1.5 Document Preparation

The transient metrics presented in Table 15 are associated with the new Indexing capabilities of CROSS-
MINER. These metrics prepare documents for indexing from bug tracking systems and communication chan-
nels. Each document contains information from delta-based readers and other metrics and is represented in
JSON format that is compatible with indexing.

Metric Status Description
Bug Tracker Indexer New This metric prepares documents from bug tracking systems for indexing
Communication Channel In-
dexer

New This metric prepares documents from communication channels for in-
dexing

Table 19: CROSSMINER Transient Metrics related to Document Preparation

27 December 2017 Version 1.0
Confidentiality: Public Distribution

Page 21

D3.4 Natural Language Components

4.2 Historic Metrics

As discussed in Section 2, historic metrics keep track of various heuristics associated with a specific open
source project over its lifetime. In CROSSMINER, historic metrics are organised into four areas: Bug Tracking
System, Newsgroup, Forum and Document Preparation.

4.2.1 Bug Tracking Systems

Table 20 presents the historic metrics related to bug tracking systems in CROSSMINER:

Metric Status Description
Number of Bugs Migrated It indicates how many bugs there are across all the bug tracking systems

related to a project over time.
Number of Comments Migrated It indicates the evolution in the quantity of comments for all the bugs

related to a project over time
Emotions Migrated Summarises the emotions expressed in the bug tracking systems of a

given project
Number of New Bugs Migrated Indicates the number of new bugs created over time
Number of new users Migrated Indicates the number of new users over time
Open Time Migrated Measures the average duration an issue is open
Number of patches Migrated Computes the number of bug patches over time
Number of Requests &
Replies

Migrated Indicates the number of requests and replies out of all comments in the
bug tracking systems for a given project

Response Time Migrated Measures the average time it takes for a request to be replied, for a given
project.

Sentiment Migrated Reveals which sentiments are expressed in a bug tracking system for a
project

Severity Migrated Estimates the severity levels of bugs found in the bug tracking system
of a project

Status Migrated Indicates the status of a bug, e.g. open, closed
Topics Migrated Indicates the topics that were discussed throughout the project via clus-

tering
Unanswered Migrated Indicates how many issues remain unanswered over time
Users Migrated Holds the users that have posted at the bug tracking systems of a project

over time

Table 20: CROSSMINER Historic Metrics related to Bug Tracking Systems

Page 22 Version 1.0
Confidentiality: Public Distribution

27 December 2017

D3.4 Natural Language Components

4.2.2 Newsgroups

Presented in Table 21 are the Historic metrics associated with Newsgroups in CROSSMINER.

Metric Status Description
Number of Articles Migrated Computes the number of articles per day for each newsgroup separately
Emotions Migrated Computes the number of emotional dimensions in comments submitted

every day
New Threads Migrated Computes the number of new threads per day for each newsgroup sep-

arately
New Users Migrated Computes the number of new users per day for each newsgroup sepa-

rately
Requests & Replies Migrated Computes the number of request and reply newsgroup articles per day

for each newsgroup separately
Average Requests & Replies Migrated Computes the average number of request and reply newsgroup articles

per day
Response Time Migrated Computes the average time in which the community responds to open

threads per day for each newsgroup separately.
(Format: dd:HH:mm:ss:SS, where dd=days, HH:hours, mm=minutes,
ss:seconds, SS=milliseconds)

Sentiment Migrated Computes the overall sentiment per repository up to the processing date.
The overall sentiment score ranges from -1 (negative sentiment) to +1
(positive sentiment). In the computation, the sentiment score of each
thread contributes equally, independently of its size.

Severity Migrated Computes the number of newsgroup severity levels in threads submitted
every day

Severity Response Time Migrated Computes the average sentiment, the sentiment at the beginning of
threads and the sentiment at the end of threads per severity level, in
newsgroup threads submitted every day

Severity Sentiment Time Migrated Computes the average sentiment, the sentiment at the beginning of
threads and the sentiment at the end of threads per severity level, in
newsgroup threads submitted every day

Threads Migrated Computes the number of threads per day for each newsgroup separately
Topics Migrated Computes the labels of topics (thematic clusters) in articles submitted

every day
Unanswered Threads Migrated Computes the number of unanswered threads per day for each news-

group separately
Users Migrated Computes the number of active and inactive users per day for each

newsgroup separately

Table 21: CROSSMINER Historic Metrics related to Newsgroups

27 December 2017 Version 1.0
Confidentiality: Public Distribution

Page 23

D3.4 Natural Language Components

4.2.3 Forums

The historic metrics shown in Table 22 were all newly developed for CROSSMINER to account for the new
type of communication channel that was implemented. For reasons discussed earlier in Section 4.1.4, we have
chosen not to integrate these at this time until we can ensure their accuracy.

Metric Status Description
Number of Posts New Indicates how many forum posts there are within a specific forum over

time
Number of Topics New Indicates how many forum topics there are within a specific forum over

time
Emotions New Summarises the emotions expressed in the bug tracking systems of a

given project
Number of New Posts New Indicates the number of new posts created over time
Number of new users New Indicates the number of new users over time
Number of Requests &
Replies

New Indicates the number of requests and replies out of all forum posts
within a specific forum

Response Time New For a given project, it measures on average the time it takes for a reply
to a forum post.

Sentiment New Reveals which sentiments are expressed in posts related to a specific
forum

Status New Indicates the status of a topic, e.g. open, closed
Unanswered New Indicates how many topics remain unanswered over time
Users New Holds the users that have posted at the bug tracking systems of a project

over time

Table 22: CROSSMINER Historic Metrics related to Forums

4.2.4 Document Preparation

Unlike other historic metrics, the metric shown in Table 23 does not contribute any knowledge from delta based
sources to the knowledge base22. This historic metric was included to enable the transient metrics responsible
for document preparation to be triggered during execution, as discussed in Section 2.1.2.

Metric Status Description
Index New This metric is an architectural requirement associated with the prepara-

tion of documents for indexing. This does not ‘compute’ knowledge for
the knowledge base.

Table 23: A CROSSMINER Historic Metric related to Indexing

4.3 Summary

In summary, this section has described all transient and historic metrics associated with natural language
processing in CROSSMINER. We have introduced a total of 25 new metric providers, updated a further two,
upgraded three and migrated a further 49 from OSSMETER into CROSSMINER.

22It should be noted that this historic metric should be hidden from users of the platform, so that they cannot select to
exclude it

Page 24 Version 1.0
Confidentiality: Public Distribution

27 December 2017

D3.4 Natural Language Components

5 Tools

A number of tools related to natural language have been integrated into CROSSMINER. Most tools were
designed and developed from scratch, adding new capabilities to the platform.

Components presented in this deliverable depend on various tool-kits23 Traditionally these dependencies would
be added using a dependency management mechanism such as Maven or Gradle. However, due to the limita-
tions24 of Eclipse headerless PDE (Plug-in Development Environment), libraries required by each tool-kit had
to be added manually as a plug-in package that exposes the libraries at runtime. This ensures that the libraries
are accessible by the tools that require them. Additionally, each tool kit was carefully scrutinised to ensure that
its licence is compatible with CROSSMINER.

CROSSMINER natural language tools can be divided into three types depending on the functionality they
provide to the platform, as shown in Figure 7. In this section, we describe the types of tools and the tools
themselves, detailing their role in CROSSMINER, as well as their dependencies.

CROSSMINER
Tools

Text
Pre-Processing Indexing Natural Language

Processing

Figure 7: Types of Tools in CROSSMINER

5.1 Text Pre-Processing Tools

Due to the diverse nature of natural language sources used in CROSSMINER, data needs to be pre-processed
before natural language processing. In other words, data is transformed into a standard format in a pre-
processing stage. For example, GitHub and StackOverflow text comes formatted in markdown syntax. The
former always returns text in the original markdown syntax, whereas StackOverflow returns text in HTML
format.

To ensure that the input of natural language processing tools is formatted as required, we have implemented
and integrated into CROSSMINER a series of pre-processing tools, accessible to CROSSMINER tools and
users. The pre-processing tools are:

23In the context of this document, a tool-kit represents a collection of code libraries (jars).
24More information regarding this limitation can be found at http://maven.apache.org/plugins/maven-

eclipse-plugin/pde.html

27 December 2017 Version 1.0
Confidentiality: Public Distribution

Page 25

http://maven.apache.org/plugins/maven-eclipse-plugin/pde.html
http://maven.apache.org/plugins/maven-eclipse-plugin/pde.html

D3.4 Natural Language Components

• An HTML Parser
• A Markdown Parser
• A Code Detector

5.1.1 HTML Parser

An HTML Parser extracts clean text from HTML formatted input. In other words, it removes tags, such as
, and <a>, and returns only the text, that would be shown if the input was opened in a web browser.

The HTML parser uses an interface to JSOUP HTML parser and has been extended with extra methods, such
as splitting text into paragraphs25, parsing and removing certain HTML tags, or filtering of text with respect to
specific labels, only.

5.1.2 Markdown Parser

Markdown provides syntax for formatting plain text in websites. Markdown is widely used in websites, such
as GitHub and StackOverflow, as it can be easily parsed and converted into HTML. We integrated a markdown
parser able to convert the enriched text, either into plain text or HTML formatted text. The tool is back-ended
by the Atlassian Commonmark parser.

5.1.3 Code Detector

In software communities, messages usually contain code listings often referred to as snippets. From a human
perspective, this is helpful for developers for reasons such as solving a problem or declaring a bug. Nonetheless,
from a natural language processing perspective, code-related elements can be a source of noise.

Although some data sources, such as StackOverflow or GitHub, support special tags to mark code portions,
others, such as newsgroups, do not provide such features. Moreover, marking code portions, in most cases, is
left to the user decision, therefore the tag is sometimes used inaccurately.

For these reasons, we have developed a code detector and presented it in D3.1. It is identifies if a body of text
contains code or natural language in English. The code detector is currently used by the sentiment analyser,
the emotion classifier and the severity classifier.

5.2 Natural Language Processing Tools

The following tools are utilised for processing natural language in CROSSMINER. For each tool, we present
a brief description of its role within CROSSMINER and its input and output. All tools have been designed
and developed so that they can be used as standalone tools and also are compatible with both delta-based and
non delta-based workflows. More details about the research aspects associated with these tools are presented
in D3.3.

25Paragraphs are originally defined by the HTML tag <p>.

Page 26 Version 1.0
Confidentiality: Public Distribution

27 December 2017

D3.4 Natural Language Components

5.2.1 Core Natural Language Processing Tools

In preparation for complex natural language processing tools, such as a sentiment analyser or a severity clas-
sifier, it is necessary to apply a series of core natural language processing tools, i.e. tools that perform funda-
mental text processing tasks. The tools listed below have been developed and integrated in CROSSMINER.

• A text tokeniser
• A text lemmatiser
• A text normaliser
• A Part-of-Speech tagger

The text normaliser was developed in house from scratch, whereas all other tools are back-ended by NLP4J26.
Depending on the needs of the text processing task that remain to be investigated, more core natural language
processing tools may be added in the future.

5.2.2 Severity Classifier

A software bug can impact development in many ways. In bug tracking systems, such as Bugzilla, bugs are
often assigned a severity label based on the impact that the bug may have for the project. However, filling in
this label is not mandatory for posting a bug and it is often omitted. Within the context of CROSSMINER,
the severity of a bug is a vital piece of information that can be used to influence decisions made by open
source software developers. The severity classifier is a tool that can predict the severity of a bug found on a
communication means. We have designed a severity classifier that considers seven levels of severity: normal,
enhancement, major, minor, critical or blocker.The tools uses six one-vs-rest Support Vector Machines (SVM)
organised in a tree structure.

5.2.3 Emotion Classifier

An emotion classifier is a tool that determines the emotions that are expressed in an input text. Similar to
the sentiment analyser, it is a tool that helps to quantify the opinion of users for a software project. Un-
like OSSMETER, which used a lexicon-based emotion classifier, in CROSSMINER we have trained a neural
network that allows estimating the emotions expressed in a text, e.g. love, joy, anger, sadness, fear and/or
surprise.

5.2.4 Request Reply Classifier

Unlike Q&A websites, where, by definition, only one question is allowed per post27, in other sources of data
explored in CROSSMINER, it is possible to have multiple questions/requests combined with answers/replies.
Detection of these requests and replies can improve the management of the communication means of a project.
Developers can know whether posts in sources, such as forums or issue trackers, contain multiple request and
whether these have been replied. In addition, external developers, potential adopters of the project, can deter-
mine how well the community is managed, and whether their requests would be replied. We have developed
and integrated into CROSSMINER a request/reply classifier based on a linear Support Vector Machine (SVM).

26emorynlp.github.io/nlp4j/
27In some cases, users can ask questions to the author of another question or an answer, in the form of comments.

However, these questions usually aim at clarifying the initial one.

27 December 2017 Version 1.0
Confidentiality: Public Distribution

Page 27

https://emorynlp.github.io/nlp4j/

D3.4 Natural Language Components

5.2.5 Content Classifier

Threaded messages contain indicators that can help developers evaluate an OSS project. Messages can be of
different content/functionality types. For example, a message can propose a solution to a previously reported
problem, or it may reinforce a previous question that was not answered, or verify that a previously proposed so-
lution actually worked and addressed a problem. As part of OSSMETER, a detailed hierarchy of content types
was constructed. In CROSSMINER, we used this hierarchy to develop a content classifier, i.e. an automated
tool that assigns one or more class labels to a message based on its content. Applying the content classifier to
communication channel articles and bug tracker comments provides with useful statistics about the kind of in-
teraction taking place. The content classifier that was developed and integrated in CROSSMINER utilises a
multi-class SVM.

5.2.6 Sentiment Analyser

A sentiment analyser is a tool that determines whether a text expresses positive or negative sentiment, or is
neutral, i.e. does not express any sentiment. In the domain of software engineering and software development,
sentiment analysis is a useful tool that can provide a general estimation of the feelings of users about a software
project. In other words, by applying a sentiment analyser on text from a source, such as Bugzilla or Eclipse
Forums, we can determine whether users are satisfied or not through the polarity of sentiment expressed in
messages. The sentiment analyser developed for and integrated into CROSSMINER is a multi-class classifier
based on VastText, a neural network developed in house.

5.2.7 Thematic Clustering

Due to the large quantity of information available along all the sources, it is sometimes necessary to know,
grosso modo, which are the topics/subjects discussed. By knowing the topics discussed by users, developers
can improve the management of a project. In other words, thematic clustering allows identifying trends of
errors, discussions or thoughts. Therefore, in CROSSMINER, we provide a thematic clustering tool. The tool
uses Carrot2, an open source clustering tool that groups documents into labelled clusters according to their
topic. Cluster labels are determined automatically by the Lingo algorithm, which internally scores terms to
find the candidate that bests represents each group of cluster.

5.3 Index Manager

The Index Manager is a new component developed for CROSSMINER. It provides the facilities to manage, in-
teract and populate the ElasticSearch cluster contained within the knowledge base. It was developed following
the singleton design pattern and using the tool-kit exposed by the org.eclipse.scava.elasticsearch.dependencies
package. This approach restricts the instantiation of the IndexManager class to a single object that is respon-
sible for coordinating all interactions between the CROSSMINER platform and the ElasticSearch cluster, as
shown in Figure 8.

Page 28 Version 1.0
Confidentiality: Public Distribution

27 December 2017

D3.4 Natural Language Components

Metric Provider
Knowledge Base

Request
Index Manager

Elasticsearch

Index Response
Non-Delta Base

Reader

Figure 8: Index Manager

The Index Manager is designed to interact with an ElasticSearch cluster running version 6.3. The toolkit
integrated into CROSSMINER contains all the necessary libraries associated with version 6.3 of the “High-
level Rest Client API” and “Java API” (transport client).

Currently, the Index Manager publicly exposes two static methods called performIndexing for indexing a doc-
ument. These method automatically handles the steps for indexing a document including the creation of the
index, adding mappings, converting objects to JSON and creating or updating elements within the Elastic-
Search cluster. The methods require arguments such as: indexName, mapping (optional), documentType, uid,
and document. Each are described in Table 24.

Parameter Type Description
Index Name String The name of the index you wish to add the document to
Mapping String (optional)A string in JSON format that contains informa-

tion information regarding the data type of the fields con-
tained within a document.

Document object A Java object that contains the information you wish to
index

Document Type String The type of the document, e.g. ’github_issue’
Unique ID String A uniquely identifiable string for the document

Table 24: performIndexing Arguments

The Index Manager is also capable of supporting various configurations of ElasticSearch depending on the
user’s specific requirements. Users of the CROSSMINER platform are required to modify/populate the elas-
ticsearch.properties file located in the elasticsearch.properties directory to provide the tool with the correct
configuration settings for their ElasticSearch cluster contained within the knowledge base. This is a vital step
to ensure that the Index Manager is capable of interacting with the user’s ElasticSearch cluster.

In relation to the other natural language components developed as part Task 3.3., the Index Manager is em-
ployed by the delta-based workflow, as shown in Figure 4, and also by two transient metrics responsible for
document preparation. It is also used as a component in the non-delta based workflow, as shown in Figure 6,
for enriching the knowledge base with information from “social media” and “question & answer websites”.
The latter plays a critical role in our future D3.5.

5.4 Summary

This section has presented a collection of tools integrated into CROSSMINER that are utilised by numerous
metric providers to facilitate access, pre-processing, processing and indexing of natural language sources.

27 December 2017 Version 1.0
Confidentiality: Public Distribution

Page 29

D3.4 Natural Language Components

6 Risks and Limitations

The purpose of this section is to discuss the risks and limitations related to this deliverable. Due to the nature
of software development and the design choices that were made, the components discussed in this deliverable
have limitations and are associated with risks, as shown below:

Risks:

• The APIs and methods used to access information may become outdated / deprecated.
• The number of API calls allowed for sources may be reduced by the API policy makers.
• Discontinuation of support for libraries used for natural language processing tools.

Limitations:

• For readers that utilise dumps/archives, manual intervention is required when new ones are made avail-
able.

• Large volumes of archived data from non-delta based readers may take a long time to process.
• The size of classification models of our tools may increase the overall system requirements for CROSS-

MINER.
• Information contained within dumps/archives is not always up-to-date.

Page 30 Version 1.0
Confidentiality: Public Distribution

27 December 2017

D3.4 Natural Language Components

7 Conclusions

To conclude, this deliverable has discussed in detail the natural language components integrated into CROSS-
MINER as a consequence of the requirements provided by our use case partners. Presented below is a summary
of the outcomes of this deliverable with respect to each of the natural language components discussed through-
out this report:

• Readers:
• Two methods for enriching the knowledge base: via delta based and non-delta based readers
• CROSSMINER now has the capabilities to mine information from Bug tracking systems, Com-

munication channels, Social Media and Question & Answer Websites.
• Integrated a total of 17 readers

• Metric Providers:

• Developed various new metric providers to support forums, a new type of communication channel
• Upgraded several natural language processing metric providers to utilise: text pre-processing tools

and/or the core set of NLP tools
• Migrated / integrated metric providers associated with: Bug tracking systems, Newsgroups and

Forums
• Included transient and historic metrics that prepare documents for indexing

• Tools:
• Developed and integrated a core set of natural language processing tools.
• Integrated several new and improved tools, developed in Task 3.1.
• Developed and integrated an Index Manager, i.e. a component that adds support for populating the

ElasticSearch cluster contained within the CROSSMINER knowledge base.

7.1 Work Package 3: Progress

The objective of this section is to provide an insight into the overall progress of Work Package 3 (WP3). WP3
has a total of four tasks and five deliverables. To date three tasks have been completed and four deliverables
have been submitted. Each completed deliverable is summarised below.

• D3.1 This deliverable reported the current progress of Task 3.1 and includes an investigation of state-
of-the-art methods for text representation as well as presented experimentation with English vs Code
classifier. This deliverable provided the part of the foundations for D3.3 and was delivered on time in
M12.

• D3.2 The focus of this deliverable was to investigate methods for reading and searching text sources
associated with OSS projects. It identified various new sources of information, highlighted issues with
existing readers and provided insight to which readers could be migrated from OSSMETER to CROSS-
MINER. It also explored how two new source types can be exploited in CROSSMINER. Finally, it
presented an analysis of two open source search engines with regards to their suitability for CROSS-
MINER. Its purpose was to provide the foundations for deliverables D3.3 and D3.4 and was delivered
on time in M18 of the project.

• D3.3 Since task one spanned over 24 months, this deliverable represents the completion of Task 3.1
and presents the experimentation and results in relation to natural language tools developed for CROSS-
MINER. This deliverable was delivered on time in M24 of the project.

27 December 2017 Version 1.0
Confidentiality: Public Distribution

Page 31

D3.4 Natural Language Components

• D3.4 This deliverable is associated with design, development and integration of the various natural
language related components into the CROSSMINER platform. This deliverable was also delivered on
time in month 24 of the project.

With regards to the current overall progress of WP3, there has been significant advancements made towards
the completion of the requirements that its is linked to. Requirements associated to this work package are di-
vided into two areas: those provided by CROSSMINER use case partners and those provided by technology
partners . The progress for each area of requirements is presented in Table 25 and 26, respectively.

Ref Description Priority Progress Notes
3. Natural Language Searching
U30 Able to search “part of speech” parts of

code
Should Planning Task 3.4. Involves

the analysis of com-
ments

U31 Able to search mailing-lists Shall Completed Task 3.3
U32 Able to search forums Shall Completed Task 3.3
U33 Able to search issues Shall Completed Task 3.3
U34 Able to search configuration files Shall In Progress Task 3.4. Involves

the analysis of com-
ments

U34 Able to search documentation Shall Planning Task 3.4
U36 Able to search a blog Shall Planning Task 3.4. Involves

the analysis of snip-
pets

U37 Able to search IRC Shall Completed Task 3.3
U38 Able to search simultaneously across

all the data sources
Shall Completed Task 3.3

U39 Able to present the results by data
source or globally for the project

Shall Completed Task 3.3

U40 Able to order the results by relevance May In Progress To be investigated
further in Task 3.4

U41 Able to search using regular expression
patterns

Shall Completed Task 3.3

U42 Able to detect in the data sources text
referring to one or several bugs

Shall In Progress Just the implementa-
tion stage to be com-
pleted

U43 Able to detect in the data sources text
referring to one or several commits

Shall In Progress In collaboration with
CWI. Just the imple-
mentation stage to be
completed.

U44 Able to extract sentiment analysis from
the communication data sources

Shall Completed Task 3.3

U45 Able to extract sentiment analysis from
wikis

Should In Progress Task 3.4. The Sen-
timent Analysis com-
ponent is completed.
A reader for wikis to
be implemented.

U46 Able to detect similarities in messages
so as to suggest answers

Should Completed Task 3.3

U47 Able to propose recommendations to
improve community management

Should Completed Task 3.3

Page 32 Version 1.0
Confidentiality: Public Distribution

27 December 2017

D3.4 Natural Language Components

Ref Description Priority Progress Notes
U48 Able to identify recurring problems

identified by users
Should Completed Task 3.3

U49 Able to detect in the data sources one
or several commits hashes

Shall In Progress Task 3.4. In collabo-
ration with CWI. Im-
plementation stage to
be completed.

U50 Able to list commits with bugs Shall In Progress
U51 Able to list bugs with commits Shall In Progress
U52 Able to list unattended bugs Should Completed Task 3.3
U53 Able to list unattended messages Should Completed Task 3.3
U54 Able to create a cluster map for mes-

sages using Lingo or similar clustering
technology

Should Completed Task 3.3

U55 Able to create a cluster map for bugs
contents using Lingo or similar cluster-
ing technology

Should Completed Task 3.3

U56 Able to create a cluster map for com-
mit messages contents using Lingo or
similar clustering technology

Should In Progress
Task 3.4. In collabo-
ration with CWI

U57 Able to identify the list of changed
third-party API methods from GitHub
issues

Should In Progress

U58 Able to identify that the topic of a fo-
rum thread is the migration of a given
third-party API

Should In Progress

U59 Able to identify code snippets that use
old and new third-party API in forum
threads concerning migration of the us-
age of the given third-party API

Shall In Progress

U60 Able to analyse level of user activity in
issue trackers

Shall Completed Task 3.3

U61 Able to identify if a thread reached a
conclusion and if it was positive

Should Completed Task 3.3

4. Analysis of Docs/Code Snippets
U62 Able to extract text from HTML and

markdown to feed natural language
analysis and identify code snippets

Shall Completed Task 3.4

U63 Able to extract text from PDF to feed
natural language analysis and identify
code snippets

May In Progress Task 3.4

U64 Provides recommendations to add doc-
umentation commonly found in suc-
cessful projects

Should Planning Task 3.4

U65 Provides recommendations to improve
the structure of the documentation

Should Planning Task 3.4

U66 Able to analyse Java code snippets Shall Planning Task 3.4
U67 Able to analyse JavaScript code snip-

pets
Should Planning Task 3.4

U68 Able to analyse C code snippets Shall Planning Task 3.4
U69 Able to analyse PHP code snippets Shall Planning Task 3.4

27 December 2017 Version 1.0
Confidentiality: Public Distribution

Page 33

D3.4 Natural Language Components

Ref Description Priority Progress Notes
U72 Able to determine migration pattern

from two (or more) code snippets when
one of them uses the old third-party
API and the other uses the new third-
party API

Shall Planning Task 3.4

U73 Able to identify the part of the API that
the developer is currently using to pro-
vide code snippets in relation with cur-
rent development activity

Shall Planning Task 3.4

U74 Able to analyse the API documenta-
tion (when available) and determine if
it matches the current API of the library

May Planning Task 3.4

8. Project Documentation Analysis
U110 Able to analyse PDF documents May Planning Task 3.4
U111 Able to identify the documentation

contains a Getting Started
Should Planning Task 3.4

U112 Able to identify if the documentation
contains a User Guide

Should Planning Task 3.4

U113 Able to identify if the documentation
contains a Developer Guide

Should Planning Task 3.4

U114 Able to identify if the documentation
contains code snippets

Should Planning Task 3.4

U115 Able to analyse if the documentation
has a license

Shall Planning Task 3.4

U116 Able to analyse readability of docu-
mentation

Shall Planning Task 3.4

U117 Able to identify the list of changed
third-party API methods from docu-
mentation

Should Planning Task 3.4

U118 Able to identify the list of deprecated
third-party API methods from docu-
mentation

Should Planning Task 3.4

U119 Able to look up the documentation of
the public API provided by a project

Shall Planning Task 3.4

U120 Able to look up the source code exam-
ples of a public API of project

Shall Planning Task 3.4

U121 Able to analyse documentation to col-
lect information related to the usage of
the API provided by the project

Should Planning Task 3.4

Table 25: WP3 Use Case Requirements - Current progress

Ref Description Priority Progress Notes
D32 The NLP analysis component should

record the sources used by the devel-
oper and use them as a form of auto-
matic feedback to improve its sugges-
tions.

Should In Progress Task 3.3. In collabo-
ration with FEA

Page 34 Version 1.0
Confidentiality: Public Distribution

27 December 2017

D3.4 Natural Language Components

Ref Description Priority Progress Notes
D72 The other mining tools developed in

WPs 2-4 shall expose a REST API
that the cross-project relationship min-
ers can consume

Shall Completed Task 3.3

D73 The other mining tools developed in
WPs 2-4 shall expose project level met-
rics that cross-project relationship min-
ers can consume

Shall Completed Task 3.3

Table 26: WP3 Technology Requirements - Current progress

At the time of writing this deliverable, there is one ongoing task in WP 3, Task 3.4. This task focuses on the
development of a recommender that suggests code snippets and discussion from social media relevant to the
code that is being developed in the Integrated Development Environment (IDE). For the recommendation we
shall consider a variety of resources including code, documentation and online discussions. The deliverable
associated with this task is due during M30 of the project.

7.2 Future Work

With regards to WP3, our efforts will be divided between several areas. As discussed in Section 3, GitLab and
Bugzilla readers will be developed and integrated into CROSSMINER once RESTmule has the capabilities
to support both sources. Metric providers associated with forums will be tested and integrated once the issue
with the forums has been fixed. We will also address any issues that arise due to modifications to other
CROSSMINER components that have been developed outside the scope of this deliverable. We need to conduct
further investigation and discussions surrounding requirement D32, shown in Table 26. However, the majority
of our efforts will focus on Task 3.4, the development of a recommender that suggests code snippets and
discussions from social media relevant to the code that is being developed in the Integrated Development
Environment (IDE).

27 December 2017 Version 1.0
Confidentiality: Public Distribution

Page 35

	Introduction
	Overview
	Intentions
	Outcome

	CROSSMINER Component Overview
	Natural Language Components
	Readers
	Metric providers
	Tools
	Knowledge Base

	Summary

	Readers and Reader Related Components
	Delta Based Readers
	Bug Tracking Systems
	Communication Channels

	Non-Delta Based Readers
	Social Media
	Question & Answer Websites

	Summary

	Metric Providers
	Transient Metrics
	Natural Language Processing Transient Metrics
	Bug Tracking Systems
	Newsgroups
	Forums
	Document Preparation

	Historic Metrics
	Bug Tracking Systems
	Newsgroups
	Forums
	Document Preparation

	Summary

	Tools
	Text Pre-Processing Tools
	HTML Parser
	Markdown Parser
	Code Detector

	Natural Language Processing Tools
	Core Natural Language Processing Tools
	Severity Classifier
	Emotion Classifier
	Request Reply Classifier
	Content Classifier
	Sentiment Analyser
	Thematic Clustering

	Index Manager
	Summary

	Risks and Limitations
	Conclusions
	Work Package 3: Progress
	Future Work

