
Project Number 732223

D2.5 Dependency Analysis Components

Version 1.0
28 December 2018

Final

Public Distribution

Centrum Wiskunde & Informatica (CWI)

Project Partners: Athens University of Economics & Business, Bitergia, Castalia Solutions,
Centrum Wiskunde & Informatica, Eclipse Foundation Europe, Edge Hill
University, FrontEndART, OW2, SOFTEAM, The Open Group, University of
L′Aquila, University of York, Unparallel Innovation

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
CROSSMINER Project Partners accept no liability for any error or omission in the same.

© 2018 Copyright in this document remains vested in the CROSSMINER Project Partners.

D2.5 Dependency Analysis Components

Project Partner Contact Information

Athens University of Economics & Business Bitergia
Diomidis Spinellis José Manrique Lopez de la Fuente
Patision 76 Calle Navarra 5, 4D
104-34 Athens 28921 Alcorcón Madrid
Greece Spain
Tel: +30 210 820 3621 Tel: +34 6 999 279 58
E-mail: dds@aueb.gr E-mail: jsmanrique@bitergia.com
Castalia Solutions Centrum Wiskunde & Informatica
Boris Baldassari Jurgen J. Vinju
10 Rue de Penthièvre Science Park 123
75008 Paris 1098 XG Amsterdam
France Netherlands
Tel: +33 6 48 03 82 89 Tel: +31 20 592 4102
E-mail: boris.baldassari@castalia.solutions E-mail: jurgen.vinju@cwi.nl
Eclipse Foundation Europe Edge Hill University
Philippe Krief Yannis Korkontzelos
Annastrasse 46 St Helens Road
64673 Zwingenberg Ormskirk L39 4QP
Germany United Kingdom
Tel: +33 62 101 0681 Tel: +44 1695 654393
E-mail: philippe.krief@eclipse.org E-mail: yannis.korkontzelos@edgehill.ac.uk
FrontEndART OW2 Consortium
Rudolf Ferenc Cedric Thomas
Zászló u. 3 I./5 114 Boulevard Haussmann
H-6722 Szeged 75008 Paris
Hungary France
Tel: +36 62 319 372 Tel: +33 6 45 81 62 02
E-mail: ferenc@frontendart.com E-mail: cedric.thomas@ow2.org
SOFTEAM The Open Group
Alessandra Bagnato Scott Hansen
21 Avenue Victor Hugo Rond Point Schuman 6, 5th Floor
75016 Paris 1040 Brussels
France Belgium
Tel: +33 1 30 12 16 60 Tel: +32 2 675 1136
E-mail: alessandra.bagnato@softeam.fr E-mail: s.hansen@opengroup.org
University of L′Aquila University of York
Davide Di Ruscio Dimitris Kolovos
Piazza Vincenzo Rivera 1 Deramore Lane
67100 L′Aquila York YO10 5GH
Italy United Kingdom
Tel: +39 0862 433735 Tel: +44 1904 325167
E-mail: davide.diruscio@univaq.it E-mail: dimitris.kolovos@york.ac.uk
Unparallel Innovation
Bruno Almeida
Rua das Lendas Algarvias, Lote 123
8500-794 Portimão
Portugal
Tel: +351 282 485052
E-mail: bruno.almeida@unparallel.pt

Page ii Version 1.0
Confidentiality: Public Distribution

28 December 2018

D2.5 Dependency Analysis Components

Document Control
Version Status Date

0.1 First draft 04 December 2018
0.2 First internal release 16 December 2018
1.0 Final release 28 December 2018

28 December 2018 Version 1.0
Confidentiality: Public Distribution

Page iii

D2.5 Dependency Analysis Components

Table of Contents

1 Overview 1

2 Architecture of the OSGi Analysis Tool 2

2.1 The Parsing Component . 2

2.2 The Builder Component . 4

2.3 The Analysis Component . 5

2.4 The Refactoring Component . 5

2.5 Smells Detection . 6

3 CROSSMINER Components 7

3.1 Rascal Dependency . 7

3.2 OSGi Dependency Miner . 7

3.3 Apache Maven Dependency Miner . 8

4 Dependencies Metrics in the CROSSMINER Dashboard 11

5 Conclusion 13

Page iv Version 1.0
Confidentiality: Public Distribution

28 December 2018

D2.5 Dependency Analysis Components

Executive Summary

This document presents the final version of the software components developed in the context of Task 2.1,
Task 2.2, and Task 2.3 for the CROSSMINER platform:

Task 2.1 Inference of project build configuration.

Task 2.2 Modeling framework semantics.

Task 2.3 Dependency analysis.

This document is the latest iteration on the dependency components of the CROSSMINER platform. It updates
and supersedes the previous deliverables D2.2 – Framework Modelling Components and D2.4 – Dependency
Inference Components. It focuses on the software we develop for Task 2.1, Task 2.2, and Task 2.3. For
more information on the research questions we address, the way we infer and analyze dependencies from
meta-data and bytecode for Apache Maven and OSGi in the context of the CROSSMINER project, and
an empirical study of OSGi best practices in the Eclipse ecosystem, we refer the reader to the companion
deliverable D2.3 – Dependency Inference and Analysis – Final Progress Report, which also contains the
list of requirements emerging from CROSSMINER partners that are addressed by our tool, and our publication
at the 15th International Conference on Mining Software Repositories (MSR’18) [3].

The software we develop in this context aims at automatically inferring the dependencies of the software artifacts
analyzed by the CROSSMINER platform, by extracting information from their build configuration, meta-data,
and source code. Specifically, we cover two of the most popular frameworks for dependencies management
in the Java ecosystem: OSGi and Apache Maven (Task 2.1 and Task 2.2). More specifically, we pay special
attention to the way OSGi is used within the Eclipse ecosystem, as part of the Eclipse plug-in model. To
avoid over-generalizing our OSGi results, we adapt our model to the specificities of the Eclipse plug-in model
(Task 2.3), as required for instance in the Eclipse Europe Foundation use case.

Building on its success to define various metric providers in the context of the predecessor project OSSMETER,
we rely on Rascal [2] to implement all the components necessary for analyzing OSGi and Apache Maven
meta-data and dependencies: parsers, model builders, metrics, analyzers, and refactoring tools.

In this document:

• We give a general overview of the software we developed in Section 1;

• We present the architecture of the OSGi analyzer in Section 2;

• We detail the integration of the OSGi and Apache Maven miners and analyzers within the CROSSMINER
platform in Section 3;

• We present the visualizations associated to these metrics in Section 4;

• We conclude in Section 5.

28 December 2018 Version 1.0
Confidentiality: Public Distribution

Page v

D2.5 Dependency Analysis Components

1 Overview

This document presents the software implementation resulting from Task 2.1, Task 2.2, and Task 2.3. The
software output of these tasks consists of several projects publicly available on the CROSSMINER organization’s
GitHub account (https://github.com/crossminer/). They realize some of the CROSSMINER components
assigned to WP2 – Mining Source Code and described in WP8 – Platform Integration and Evaluation:

Meta-data Miner and Dependency Miner The meta-data miner and dependency miner are realized by two
components in the main repository (https://github.com/crossminer/scava/): one for Apache
Maven (the plugin org.eclipse.scava.dependency.model.maven) and one for OSGi (the plugin
org.eclipse.scava.dependency.model.osgi); these projects are the backbone of the dependency
metric providers;

Dependency Metrics The main repository also contains a number of predefined metrics in
the plug-ins org.eclipse.scava.metricprovider.trans.rascal.dependency.osgi and
org.eclipse.scava.metricprovider.trans.rascal.dependency.maven; these metrics are
meant to showcase the capabilities of our tool and to implement specific metrics required in the use cases;
the set of metrics, however, is extensible: defining new domain- or use case-specific metrics alongside
the predefined ones is straightforward;

OSGi Analyzer An OSGi analyzer, which can be used independently from the CROSSMINER platform, is
available in a separate repository (https://github.com/crossminer/osgi-analysis-rascal/); it
allows us to analyze large corpora of OSGi projects separately without having to run every other metric
of the CROSSMINER platform.

28 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 1

https://github.com/crossminer/
https://github.com/crossminer/scava/
https://github.com/crossminer/osgi-analysis-rascal/

D2.5 Dependency Analysis Components

2 Architecture of the OSGi Analysis Tool

Our analysis tool aims at extracting factual and actionable information related to dependency management
from OSGi bundles. It can be employed to analyze large corpora of OSGi bundles independently from the
CROSSMINER platform whenever necessary. Nonetheless, it is also fully integrated with the CROSSMINER
platform, as presented in Section 3. It is fully implemented in Rascal, a one-stop shop for meta-programming
that supports source code analysis, transformation, and generation [2]. Rascal is a functional programming
language where data is immutable that offers many common functional programming concepts such as pattern
matching, algebraic data types, higher-order functions, and comprehensions.

In OSGi, the primary unit of modularization is a bundle. A bundle is a cohesive set of Java packages and classes
(and possibly other arbitrary resources) that together provide some meaningful functionality to other bundles [4].
A bundle is typically deployed in the form of a Java archive file (JAR) that embeds a Manifest file describing
its content, its meta-data (e.g., version, platform requirements, execution environment), and its dependencies
towards other bundles. We refer the interested reader to D2.3: Dependency Inference and Analysis – Final
Progress Report for more information on OSGi bundles and manifests. The main input of the tool is thus a set
of JAR files corresponding to OSGi bundles containing Manifest files and the associated Java bytecode. The
analysis process consists of four main steps, which are implemented in four separate components:

1. In the first step, the Parsing component takes as input the OSGi bundles in the form of JARs and turns
them into an exploitable parse tree that can be manipulated in Rascal;

2. In the second step, the Builder component turns the parse tree into a dedicated OSGi M3 model that
stores information about the artefacts in the form of attributed relations;

3. In the third step, the Analysis component defines a set of metrics that turn the raw information stored in
the OSGi M3 model into actionable information to answer dependency-related questions;

4. In the fourth and last step, the Refactoring component may automatically transform the analyzed Manifest
files to make them comply to the OSGi best practices we identified.

We introduce each of these components, along with illustrative examples, in the remainder of this section.

2.1 The Parsing Component

The Parsing component defines the syntax of the meta-data files we analyze. For the purpose of OSGi analysis,
we implemented a grammar in Rascal that is able to parse the headers of interest in OSGi Manifest files. An
excerpt of this grammar is given in Listing 1. It essentially specifies a set of production rules defining certain
parts of the syntax of Manifest files, as formalized in the OSGi Specification Release 6 [4]. Manifest files often
contain vendor-specific and implementation-specific headers (e.g., the Eclipse-PlatformFilter header in
Eclipse Equinox). They are simply ignored in the grammar to focus only on the headers of interest related to
dependency management (Require-Bundle, Import-Package, etc.). From this grammar specification, Rascal
automatically generates a parser for Manifest files. Given a particular Manifest, the parser then produces a parse
tree that can be further processed directly within Rascal.

Page 2 Version 1.0
Confidentiality: Public Distribution

28 December 2018

D2.5 Dependency Analysis Components

1 start syntax Manifest
2 = headers: Header* headers;
3

4 syntax Header
5 = bundleSymbolicName: HeaderBundleSymbolicName bundleSymbolicName
6 | bundleVersion: HeaderBundleVersion bundleVersion
7 | dynamicImportPackage : HeaderDynamicImportPackage dynamicImportPackage
8 | exportPackage: HeaderExportPackage exportPackage
9 | importPackage: HeaderImportPackage importPackage

10 | requireBundle: HeaderRequireBundle requireBundle
11 | customHeader: HeaderCustom
12 ;
13

14 syntax HeaderBundleSymbolicName
15 = ’Bundle-SymbolicName’ ’:’ QualifiedName name
16 (’;’ {BundleSymbolicNameParameter ’;’}+)?;
17

18 syntax BundleSymbolicNameParameter
19 = singleton: ’singleton’ ’:=’ Boolean singleton
20 | fragmentAttachment: ’fragment-attachment’ ’:=’ DirectiveFragmentAttachment
21 fragmentAttachment
22 | mandatory: ’mandatory’ ’:=’ AttributeExpression mandatory
23 ;
24

25 syntax HeaderBundleVersion
26 = ’Bundle-Version’ ’:’ Version version;
27

28 syntax HeaderDynamicImportPackage
29 = ’DynamicImport-Package’ ’:’ {DynamicImportDescription ’,’}+ descriptions;
30

31 syntax DynamicImportDescription
32 = {WildCardNames ’;’}+ dynamicImports (’;’ {DynamicImportPackageParameter ’;’}+)?;
33

34 syntax WildCardNames
35 = {WildCardName ’;’}+ wildCardNames;
36

37 syntax WildCardName
38 = packageName: QualifiedName
39 | packageWildCard: QualifiedName ’.*’
40 | globalWildCard: ’*’;
41

42 syntax DynamicImportPackageParameter
43 = version: ’version’ ’=’ QuotedHybridVersion version
44 | bundleSymbolicName: ’bundle-symbolic-name’ ’=’ QualifiedName bundleSymbolicName
45 | bundleVersion: ’bundle-version’ ’=’ QuotedHybridVersion bundleVersion;
46

47 syntax HeaderExportPackage
48 = ’Export-Package’ ’:’ {ExportPackage ’,’}+ packages;
49

50 syntax ExportPackage
51 = {QualifiedName ’;’}+ packageNames (’;’ {ExportPackageParameter ’;’}+)?;
52

53 [... 448 lines ommitted ...]

Listing 1: An excerpt of the OSGi Manifest grammar in Rascal.

28 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 3

D2.5 Dependency Analysis Components

2.2 The Builder Component

The Builder component is in charge of creating a dedicated OSGi M3 model from the result of parsing a set
of OSGi Manifest files. The OSGi M3 model is a dedicated “metamodel” that represents information about a
corpus of bundles in the form of a set of attributed relations (denoted rel in Rascal). Its syntax, given by an
Algebraic Data Type, is shown in Listing 2. Table 1 gives a description of each of the relations it contains.

Essentially, the idea is to map physical bundle locations (the JAR files given as input to the tool) to a logical
location that uniquely identifies a bundle using its symbolic name and precise version. Then, the other relations
of the M3 model use these logical locations to create relations between bundles based on the information
extracted from the Manifest files. These relations typically carry a map of parameters, for instance to store the
precise bundle-version specified in a Require-Bundle header.

1 data OSGiModel = osgiModel (
2 loc id,
3 rel[loc logical, loc physical, map[str,str] params] locations = {},
4 rel[loc bundle, loc reqBundle, map[str,str] params] requiredBundles = {},
5 rel[loc bundle, loc impPackage, map[str,str] params] importedPackages = {},
6 rel[loc bundle, loc expPackage, map[str,str] params] exportedPackages = {},
7 rel[loc bundle, loc dynImpPackage, map[str,str] params] dynamicImportedPackages = {},
8 rel[loc bundle, loc impPackage] importedPackagesBC = {},
9 rel[loc bundle, loc package] bundlePackagesBC = {},

10 rel[loc bundle, set[Header] header] headers = {}
11);

Listing 2: The OSGi M3 model in Rascal.

It is important to note that some of these relations define links between OSGi Manifest files and the Java
bytecode they are attached to. In order to do so, our tool relies on the Java M3 model that has been developed
in the context of the predecessor OSSMETER project [1]. The Java M3 model stores information about the
bundles’ code (for instance inheritance relations between classes, overriding relation between methods, etc.).
The importedPackagesBC relation, for example, associates a logical bundle location (loc bundle) to a set of
Java packages extracted from the M3 model and uniquely identified by a Rascal location (loc package). In this
particular case, this information is used to look for superfluous bundle dependencies, i.e., dependencies that are
declared in the Manifest but not used in the actual code of a bundle.

Table 1: Relations of the OSGi M3 model.
Relation Description

rel[loc,loc,map] locations Links logical URLs, used as bundle identifiers, to their physical location.
The bundle’s version is included in a map.

rel[loc,loc,map] requiredBundles Links bundle logical locations to required bundle logical locations. Main
Require-Bundle attributes are set in a map.

rel[loc,loc,map] importedPackages Links bundle logical locations to imported package logical locations.
Main Import-Package attributes are set in a map.

rel[loc,loc,map] exportedPackages Links bundle logical locations to exported package logical locations.
Main Export-Package attributes are set in a map.

rel[loc,loc,map]
dynamicImportedPackages

Links bundle logical locations to dynamically imported package logical
locations. Main DynamicImport-Package attributes are set in a map.

rel[loc bundle,
set[Header] header] headers

Stores all other headers.

Page 4 Version 1.0
Confidentiality: Public Distribution

28 December 2018

D2.5 Dependency Analysis Components

1 public int getRequiredBundlesSize(OSGiM3Model model)
2 = size(model.requiredBundles);

Listing 3: Using Rascal to compute the number of Require-Bundle relations in an OSGi M3 model.

Another important aspect of the OSGi M3 model is that it can be computed once for a given corpus and then
serialized separately. This avoids having to reconstruct a new OSGi M3 model from scratch (with the overhead
of the parsing and building phases) every time a new metric is added or modified.

From this model, it is straightforward to implement simple high-level metrics that return factual information
about the analyzed bundles. Listing 3, for instance, depicts a simple function that, given an OSGi M3 model,
returns the number of Require-Bundle relations in the model. Some of the metrics we defined for OSGi are
detailed in Section 3.

2.3 The Analysis Component

The Analysis component takes the result of the Builder component, i.e., an OSGi M3 model, and turns it into
factual information related to dependency management in OSGi. Roughly, it turns raw data into meaningful
information that answers specific questions for the developers. In D2.3: Dependency Inference and Analysis
– Final Progress Report, we use the Analysis component to define metrics related to best practices in OSGi.

2.4 The Refactoring Component

We implemented a number of refactorings atop our analysis of best practices in the OSGi ecosystem. These
refactorings are currently being integrated within the CROSSMINER platform. When a smell is detected in
the dependency meta-data, the analysis component formulates a recommendation to which is associated a
refactoring. We are currently putting every component together (the dependency miners, the Knowledge Base,
and the IDE) to automatically refactor the dependency meta-data in the CROSSMINER IDE at M30.

For instance, an excerpt of the refactoring transforming all Require-Bundle into a set of Import-Package—
corresponding to the best practice [B1] as described in D2.3: Dependency Inference and Analysis – Final
Progress Report—is given in Listing 4 and available online (https://github.com/crossminer/osgi-
analysis-rascal/blob/master/code/DependenciesAnalyzer/src/org/analyzer/osgi/analysis/

smells/requireBundle/Modifier.rsc). The modifyManifests function considers an OSGi M3 to perform
the corresponding refactoring (Line 1). First, it identifies and considers bundles that do not provide an imple-
mentation (aka. extension) to a given plug-in API (aka. extension point) (Lines 2-6). Extensions and extension
points are included as part of the capabilities offered by the Plug-in Development Environment (PDE)1 of
Eclipse. Requiring a bundle that offers a target extension point is mandatory in the case of extension bundles;
thus, the Require-Bundle header is not modified in these cases.

Afterwards, for a given non-extension bundle we check which are its corresponding mandatory required bundles
(i.e., bundles that export split packages, the OSGi system bundle, or unresolved bundles) (Line 7). For the
remaining bundles defined in the Require-Bundle header we extract the exported packages that are actually
being used in the code (Line 8). This operation is supported by the bundleToPackageDependencies function
(Lines 17-25), where for a given bundle b and each one of its required bundles r, we intersect the set of exported

1PDE includes OSGi tooling as well as additional functionality to manage plug-ins, fragments, features, update sites,
and Rich Client Platform (RCP) products. More information available at https://www.eclipse.org/pde/.

28 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 5

https://github.com/crossminer/osgi-analysis-rascal/blob/master/code/DependenciesAnalyzer/src/org/analyzer/osgi/analysis/smells/requireBundle/Modifier.rsc
https://github.com/crossminer/osgi-analysis-rascal/blob/master/code/DependenciesAnalyzer/src/org/analyzer/osgi/analysis/smells/requireBundle/Modifier.rsc
https://github.com/crossminer/osgi-analysis-rascal/blob/master/code/DependenciesAnalyzer/src/org/analyzer/osgi/analysis/smells/requireBundle/Modifier.rsc
https://www.eclipse.org/pde/

D2.5 Dependency Analysis Components

1 void modifyManifests(OSGiModel model) {
2 Extension ext = getExtensionBundles(model);
3 nonExtensionBundles = getComplementExtensionReqBundles(model,ext);
4

5 for(<logical,physical,params> ← model.locations,
6 size(nonExtensionBundles[logical]) > 0) {
7 mandatoryReqBundles = getMandatoryRequiredBundles(logical,model);
8 importedPackages = bundleToPackageDependencies(logical,mandatoryReqBundles,model);
9

10 mandatoryReqBundlesStr = requireBundleToStr(logical,mandatoryReqBundles,model);
11 importedPackagesStr = importPackageToStr(logical,importedPackages,model);
12 changeManifest(physical, importPackage = importedPackagesStr,
13 requireBundle = mandatoryReqBundlesStr);
14 }
15 }
16

17 set[loc] bundleToPackageDependencies(loc bundle, set[loc] mandatoryReqBundles,
18 OSGiModel model) {
19 flatExportedPackages = toBinaryRelation(model.exportedPackages);
20 flatImportedPackages = toBinaryRelation(model.importedPackages);
21 importedPackages = {*((flatExportedPackages[b] & model.importedPackagesBC[bundle])
22 - flatImportedPackages[bundle]) |
23 <b,p> ← model.requiredBundles[bundle], b notin mandatoryReqBundles};
24 return importedPackages;
25 }

Listing 4: Refactoring Require-Bundles into corresponding Import-Packages in Rascal.

packages of r with the set of packages available in the bytecode of b and we remove the set of packages that are
already defined as part of the Import-Package header of b. Finally, the Require-Bundle and Import-Package

headers are recomputed (Lines 10-11), and the corresponding manifest file is refactored (Lines 12-13).

2.5 Smells Detection

The OSGi analysis tool is able to automatically detect OSGi smells from an analysis of project meta-data.
Specifically, the six smells used in the Eclipse ecosystem evaluation presented in D2.3 – Dependency Inference
and Analysis – Final Progress Report are readily implemented in the platform. For each of them, a detector
which detects the smell and an automatic refactoring tool which automatically transforms the meta-data to
conform to the best practice (see Section 2.4) are defined.

Page 6 Version 1.0
Confidentiality: Public Distribution

28 December 2018

D2.5 Dependency Analysis Components

3 CROSSMINER Components

The integration of our meta-data and dependency miners for Apache Maven and OSGi relies on two main
plug-ins integrated within the CROSSMINER platform: one for OSGi and one for Apache Maven. Atop these
plug-ins, we defined a number of metric providers that leverage the results of the dependency analysis to
compute high-level metrics that can directly be interpreted by the CROSSMINER users.

Most importantly, the analysis facilities presented in Section 2 are readily available to any dependency metric
providers.

3.1 Rascal Dependency

The OSGi and the Apache Maven CROSSMINER plug-ins have a dependency on the Rascal bundle. This
dependency is included as a required bundle in their Manifest files (rascal_bundle v0.10.0), and we added the
Rascal repository to the pom.xml file of the org.eclipse.scava.configuration project. For development
and test purposes, developers can install the Rascal plugin in the Eclipse IDE by pointing to the corresponding
update site2.

3.2 OSGi Dependency Miner

The org.eclipse.scava.dependency.model.osgi project encapsulates the OSGi analysis tool described in
Section 2 in the form of a CROSSMINER plug-in. Besides, it exposes a single API function that allows any
metric provider to retrieve the OSGi M3 model of the project that is currently analyzed. This function is depicted
in Listing 5. Given a location pointing to the working copy of the project (Line 1), the function first retrieves all
the MANIFEST.MF files found in the current project (Line 2) and builds the corresponding OSGi M3 model (Line
3). It then returns a composed M3 model that gathers all dependency-related information from all the Manifests
(Line 4).

1 OSGiModel getOSGiModelFromWorkingCopy(loc workingCopy) =
2 manifestFiles = manifestLocations(workingCopy,{});
3 models = {createOSGimodel(workingCopy, f) | f ← manifestFiles};
4 return composeOSGiModels(workingCopy, models);
5 }

Listing 5: Extracting the composed OSGi M3 model of the current project.

This public API is intended to be used by all metric providers requiring accessing information related to the
dependencies of a project. We implemented a number of predefined metrics for OSGi in the metric provider
plug-in org.eclipse.scava.metricprovider.trans.rascal.dependency.osgi. Just as any other metric
provider, this plug-in subscribes to the extension point scava.rascal.metricprovider. Other components
requiring some of the information computed by these metrics can gather this data from the non-relational
database of the project. Doing so, it is identified and invoked by the CROSSMINER platform when analyzing
projects.

Listing 6 presents some of the metrics that have been defined in this plug-in. As mentioned earlier, each metric
explicitly invokes the getOSGiModelFromWorkingCopy API to retrieve the OSGi M3 model of the current
project. Then, it computes a given metric based on the information stored in the M3 model. In particular,

2https://update.rascal-mpl.org/unstable

28 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 7

https://update.rascal-mpl.org/unstable

D2.5 Dependency Analysis Components

1 @metric{numberOSGiBundleDependencies}
2 @doc{Retrieves the number of OSGi bunlde dependencies (i.e. Require-Bundle dependencies).}
3 @friendlyName{Number all OSGi bundle dependencies}
4 @appliesTo{java()}
5 int numberOSGiBundleDependencies(
6 map[loc, loc] workingCopies = ()) {
7 if(repo ← workingCopies) {
8 m = getOSGiModelFromWorkingCopy(workingCopies[repo]);
9 return size(m.requiredBundles=={}?{}:m.requiredBundles.reqBundle);

10 }
11 return 0;
12 }
13

14 @metric{numberUsedOSGiImportedPackagesInSourceCode}
15 @doc{Retrieves the number of OSGi imported packages USED in the project source code.}
16 @friendlyName{Number OSGi imported packages in source code}
17 @appliesTo{java()}
18 int numberUsedOSGiImportedPackagesInSourceCode(
19 ProjectDelta delta = ProjectDelta::\empty(),
20 map[loc, loc] workingCopies = (),
21 rel[Language, loc, M3] m3s = {}) {
22 M3 m3 = systemM3(m3s, delta = delta);
23 if(repo ← workingCopies) {
24 m = getOSGiModelFromWorkingCopy(workingCopies[repo]);
25 return size(
26 (ternaryReltoSet(m3.importedPackages)
27 + ternaryReltoSet(m3.dynamicImportedPackages))
28 - (getImportedPackagesBC(m3)));
29 }
30 return 0;
31 }

Listing 6: Examples of predefined OSGi metrics.

if we look at the numberUsedOSGiImportedPackagesInSourceCode metric, we first define its identifier with
the @metric annotation (Line 14). Besides, its corresponding description, its name in natural language, and
the programming language of the projects that it can process are specified in the @doc, @friendlyName, and
@appliesTo annotations, respectively (Lines 15-17). Then, we declare the Rascal function and, as previously
defined in the OSSMETER deliverable D3.2: Report on Source Code Activity Metrics, we specify the
data structures that are required by the metric (i.e., delta, workingCopies, and m3s) (Lines 19-22). These
parameters are retrieved from memory once the metric provider is executed. Afterwards, we compute the
system M3 model (Line 22); and, for a given working copy, we compute the union of the imported and dynamic
imported packages of the project, and we remove the packages that are actually being used in the source code.
The cardinality of the resulting set is then returned (Lines 25-30).

3.3 Apache Maven Dependency Miner

The plug-in org.eclipse.scava.dependency.model.maven implements the meta-data and dependency miner
for Apache Maven. Maven Project Object Model (POM) files (pom.xml) are parsed using the built-in XML

Page 8 Version 1.0
Confidentiality: Public Distribution

28 December 2018

D2.5 Dependency Analysis Components

1 data MavenModel = mavenModel (
2 loc id,
3 rel[loc logical, loc physical, map[str,str] params] locations = {},
4 rel[loc project, loc dependency, map[str,str] params] dependencies = {}
5);

Listing 7: The Maven M3 model in Rascal.

parser of Rascal. From a set of pom.xml files, the parser builds a Maven M3 model conforming to the ADT
depicted in Listing 7.

The plug-in org.eclipse.scava.metricprovider.trans.rascal.dependency.maven con-
tains a number of predefined metrics for Maven, built atop the facilities provided by the
org.eclipse.scava.dependency.model.maven plug-in. These metrics are implemented with the
same principles described in Section 3.2. Listing 8 gives an excerpt of some of them. These metrics follow
the general pattern promoted in the predecessor project OSSMETER: they declare a number of parame-
ters that, according to their name, are automatically passed by the metric execution engine. For instance,
the numberUniqueMavenDependencies metric considers the workingCopies parameter, which is automat-
ically computed and passed to the metric by the platform (Line 6). To retrieve the Maven M3 model,
the metric reuses the API defined in the org.eclipse.scava.dependency.model.maven plug-in. The
getMavenModelFromWorkingCopy function retrieves a Maven M3 model that gathers information on all the
pom.xml files found in the project that is currently analyzed (Lines 7-8). Then, it checks the number of unique
dependencies in the model by considering the field selection operator provided by Rascal. The cardinality of the
set is finally retrieved (Line 9). Naturally, this set of metrics can easily be extended with new bespoke analysis.
These bespoke metrics may even cross-fertilize different metric (e.g., dependencies and NPL, or source code
and dependencies).

28 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 9

D2.5 Dependency Analysis Components

1 @metric{numberUniqueMavenDependencies}
2 @doc{Retrieves the number of unique Maven dependencies.}
3 @friendlyName{Number unique Maven dependencies}
4 @appliesTo{java()}
5 int numberUniqueMavenDependencies(
6 map[loc, loc] workingCopies = ()) {
7 if(repo ← workingCopies) {
8 m = getMavenModelFromWorkingCopy(workingCopies[repo]);
9 return size(m.dependencies=={}?{}:m.dependencies.dependency);

10 }
11 return 0;
12 }
13

14 @metric{numberOptionalMavenDependencies}
15 @doc{Retrieves the number of optional Maven dependencies.}
16 @friendlyName{Number optional Maven dependencies}
17 @appliesTo{java()}
18 int numberOptionalMavenDependencies(
19 map[loc, loc] workingCopies = ()) {
20 if(repo ← workingCopies) {
21 m = getMavenModelFromWorkingCopy(workingCopies[repo]);
22 return (0 | it + 1 | <p,d,params> ← m.dependencies, params["optional"]=="true");
23 }
24 return 0;
25 }

Listing 8: The numberUniqueMavenDependencies and numberOptionalMavenDependencies metrics de-
fined atop the Maven M3 model in Rascal.

Page 10 Version 1.0
Confidentiality: Public Distribution

28 December 2018

D2.5 Dependency Analysis Components

4 Dependencies Metrics in the CROSSMINER Dashboard

While the dependency analysis components are already readily available in the CROSSMINER platform, we are
currently working on displaying the dependency metrics in the CROSSMINER dashboards in an effective way.

As shown in the different listings of this document, most metrics compute simple numbers specifying, for
instance, what is the number of optional dependencies in a Maven project, or how many of the declared OSGi
dependencies are not actually used in the source code.

Just like most source code metrics, these metrics are currently displayed as historical charts in the dashboards,
highlighting how they are evolving over the development time of the analyzed project, and allowing developers
and managers to react when, for instance, the number of unused dependencies grows. The raw data produced by
the metrics can also be accessed from the dashboards, as depicted in Figure 1.

Figure 1: Raw data related to dependency metrics in the dashboards.

A proof-of-concept was developed independently to showcase the representation of dependencies as a depen-
dency graph, as required in the project requirements (Figure 2). While this representation is not a “metric”
in itself, it helps developers and decision makers to analyze which other components an OSS project is re-
lying on. This dependency graph is not yet integrated in the dashboards, but this will be done with the help

28 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 11

D2.5 Dependency Analysis Components

of Bitergia in later stages of the project. The current version of the proof-of-concept is available online:
https://crossminer.biterg.io/app/kibana#/dashboard/AV7m5g5kfuk55ZFAddq4.

Figure 2: Excerpt of a dependency graph in the dashboards.

Page 12 Version 1.0
Confidentiality: Public Distribution

28 December 2018

https://crossminer.biterg.io/app/kibana#/dashboard/AV7m5g5kfuk55ZFAddq4

D2.5 Dependency Analysis Components

5 Conclusion

This deliverable reports on the final progress made for Task 2.1, Task 2.2 and Task 2.3, focusing on the
software artifacts we implemented in this context. It accompanies the deliverable D2.3: Dependency Inference
and Analysis – Final Progress Report which provides complementary information on the research questions
we address and the way we infer and analyze OSGi and Apache Maven dependencies in the context of
CROSSMINER.

We presented our OSGi analysis tool and described how the metrics we implemented atop the OSGi and Maven
M3 models are integrated with the CROSSMINER platform.

28 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 13

D2.5 Dependency Analysis Components

References
[1] B. Basten, M. Hills, P. Klint, D. Landman, A. Shahi, M. J. Steindorfer, and J. J. Vinju. M3: A general model

for code analytics in Rascal. In IEEE 1st International Workshop on Software Analytics, pages 25–28, 2015.

[2] Paul Klint, Tijs van der Storm, and Jurgen Vinju. EASY Meta-programming with Rascal. In 3rd Interna-
tional Summer School Conference on Generative and Transformational Techniques in Software Engineering
III, pages 222–289, Berlin, Heidelberg, 2011. Springer.

[3] Lina Ochoa, Thomas Degueule, and Jurgen J. Vinju. An empirical evaluation of OSGi dependencies best
practices in the Eclipse IDE. In Proceedings of the 15th International Conference on Mining Software
Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018, pages 170–180, 2018.

[4] The OSGi Alliance. OSGi core release 6 specification, Jun 2014.

Page 14 Version 1.0
Confidentiality: Public Distribution

28 December 2018

	Overview
	Architecture of the OSGi Analysis Tool
	The Parsing Component
	The Builder Component
	The Analysis Component
	The Refactoring Component
	Smells Detection

	CROSSMINER Components
	Rascal Dependency
	OSGi Dependency Miner
	Apache Maven Dependency Miner

	Dependencies Metrics in the CROSSMINER Dashboard
	Conclusion

