
Software Clusterings with Vector Semantics and the Call Graph∗

Marios Papachristou†
papachristoumarios@gmail.com

National Technical University of Athens
Athens, Attica, Greece

ABSTRACT
In this paper, we propose a novel method to determine a software’s
modules without knowledge of its architectural structure, and em-
pirically validate the method’s performance. We cluster files by
combining document embeddings, generated with the Doc2Vec al-
gorithm, and the call graph, provided by Static Graph Analyzers to
an augmented graph. We use the Louvain Algorithm to determine
its community structure and propose a module-level clustering. Our
method performs better in terms of stability, authoritativeness , and
extremity over other state-of-the-art clustering methods proposed
in the literature and is able to decently recover the ground truth
clustering of the Linux Kernel. Finally, we conclude that semantic
information from vector semantics as well as the call graph can
produce accurate results for software clusterings of large systems.

CCS CONCEPTS
• Computing methodologies → Cluster analysis; Machine
learning algorithms; • Software and its engineering → Soft-
ware architectures.

KEYWORDS
document embeddings, doc2vec, linux kernel, natural language
processing, software architecture recovery, software clustering,
static graph analysis, vector semantics

ACM Reference Format:
Marios Papachristou. 2019. Software Clusterings with Vector Semantics
and the Call Graph. In Proceedings of the 27th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software En-
gineering (ESEC/FSE ’19), August 26–30, 2019, Tallinn, Estonia. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3338906.3342483

1 INTRODUCTION
In modern software systems, the need for adoption of modular soft-
ware architectural schemata becomes inevitable for robust main-
tainability of their codebases. Since the architecture of a software
system is the most fundamental realization of the software system,

∗The research described has been carried out as part of the CROSSMINER Project,
which has received funding from the European Union’s Horizon 2020 Research and
Innovation Programme under grant agreement No. 732223
†Also with Business Analytics Lab at Athens University of Economics and Business.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5572-8/19/08.
https://doi.org/10.1145/3338906.3342483

when there is no description of the architecture of it, software ar-
chitects make attempts to recover it. In the past, methods have been
proposed to identify the main components of a software system
using hierarchical clustering algorithms [1, 9] mainly by clustering
modules into subsystems, given using the source code. Recently, the
possibilities offered by machine learning techniques and practices
in the Natural Language Processing (nlp) can also be applied on
codebases as corpora of text, thus enabling the extraction of useful
information for the semantics of the source code inaugurating new
modes of reviewing the codebase.

Ourmotivation, through this paper, is to use new features, namely
vector semantics, and structural information via the call graph in
order to perform community detection and arrive at module-level
clusterings. We will study the Linux codebase and we will compare
it with ground truth using theMoJomeasure [15] as well as compare
it with other state-of-the-art and baseline clustering algorithms in
terms of stability, authoritativeness and extremity [9, 19].

2 RELATEDWORK
Onaiza Maqbool and Haroon A. Babri [9] present an overview of
the various approaches taken towards hierarchical clustering al-
gorithms for software systems. In their study, they compare many
clustering algorithms such as acdc, limbo and other Traditional
Clustering Algorithms such as Single Linkage, Complete Linkage
and Weighted Linkage presenting their efficiency regarding multi-
ple feature sets. Added to this, a semantics-based architectural view
of the system, as discussed in reference [2] reveals significant as-
pects of a software system and its change over time, which suggests
that semantic-based approaches should be followed for gaining
better understandings of a software system.

Work in Software Clustering Algorithms (sca) has been exten-
sively done by many authors in references [15], [17], [16] and [1]
with the acdc and limbo clustering algorithms. In particular, the
acdc algorithm leans toward to software components comprehen-
sion based on subsystem patterns. Their approach considers an ini-
tial structure of the system, without taking into account semantics,
and tries to build comprehensive clusterings of the given ground
structure. The authors also conducted a study on an older version
of Linux. Moreover, Andritsos and Tzerpos in reference [1] present
an Information-Theoretic approach of sca by developing limbo
which clusters modules upon inserting their Distributional Cluster
Features to a B+-tree variant and then applying the Agglomerative
Information Bottleneck algorithm.

3 METHOD
The codebase is initially preprocessed and the resulting data is fed
into a Skip-Gram model for the initial components, which corre-
spond to nodes in the call graph. Next, we add weights between the

https://doi.org/10.1145/3338906.3342483
https://doi.org/10.1145/3338906.3342483


ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Papachristou

Table 1: Experimental Results for Linux 4.21

Algorithm Feature Dimension # Clusters Size Range x̄ σ Median MoJo Distance

acdc [16] – 9055 1 – 4245 5 46 2 33694
Average Linkage [13] 300 21 1–3406 163 725 1 2092
Complete Linkage [4] 300 21 1–1529 163 412 19 1710
limbo (B = 100, S = ∞) [1] 12317 21 50–1810 163 375 50 1482
Ward Linkage [18] 300 21 21–948 163 223 70 1138
sade 300 10 (±2) 2 (±0) − 132(±13) 64 (±4) 40 (±4) 65 (±10) 243 (±1)
sade (Directed) 300 5 (±2) 1 (±1) − 614(±1) 141 (±39) 253 (±25) 2 (±0.3) 237 (±2)

Ground Truth – 21 1–1348 163 341 11.0 –

nodes with the normalized similarityw(i, j) =
(
1 + cos(di , dj )

)
/2

between the embeddings. Finally, we run the Louvain algorithm to
obtain a clustering. The overall process is described below.

First of all, we tokenize the source code and remove the stop-
words. After that, for each token, we split it into its constituent
parts using dynamic programming [5] and lemmatize each individ-
ual sub-token via using the nlp package spaCy [7]. For example,
the method __zone_seqlock_init corresponds to zone, seqlock
and init, inprogress is split into in and progress and literals
becomes literal. We, then, train a Doc2Vec model using Gensim
[12]. The codebase is also processed by a Static Graph Analyzer.
In our approach, focusing on C projects, we use CScout [14] in
order to generate the directed call graph through function calls
between the files. Each source code file is assigned to a module.
Modules can be user-defined or automatically generated by their
respective directories at a desired directory tree depth. The input
to the clustering procedure is the call graph with normalized co-
sine similarities of the modules as edge weights. Then we run the
Louvain Clustering Algorithm [3] in order to obtain the software
clustering via maximizing the modularity function with a greedy
approach. In case we want to consider edge directionality, we do a
bipartite transformation, detect communities and merge the results
with a union-find data structure as stated in reference [8].

Our method is implemented in the Python Language using
spaCy[7], Gensim [12] and NetworkX [6] and is named sade. The
source code and data are available in [11] and [10].

We have chosen to use Linux as a codebase to evaluate our
method on since it is a large and complex system with 27 years of
continuous development and spanning 20.3 millions source lines of
code (sloc) at the time of writing. Moreover, it is easy to establish
a ground truth due to its clear structure and construct test-cases
for evaluations. Finally, it was also used in related studies [16, 19]
as a reference system for evaluation.

Our method was tested on Linux 4.21, consisting of 20.3 mil-
lion sloc against Average-Linkage [13], Complete-Linkage [4] and
Ward-Linkage [18] using the same document embeddings as well
as acdc with structural information [16] and limbo [1] with Bag-
of-Words features. The results are presented in Table 1 and user-
defined parameters are formatted in italics. As ground truth, we
have used the first level directories as a target clustering and as
input, we have considered the modules of the one-top directo-
ries. For example, the source code file drivers/net/ieee802154-
/mcr20a.c has a ground truth value of drivers and it is con-
sidered under the same module as every .c and .h file under

drivers/net/ieee802154. Since Louvain Community Detection
produces different, but very similar, results from every time it runs,
we ran the simulations multiple times and averaged the results. The
experimentation with a large and complex system may constitute a
threat to our findings’ validity since the results are not general.

4 RESULTS, EVALUATION & DISCUSSION
In Table 1, we present the results of the clusterings ordered in
increasing MoJo distance with respect to the ground truth. We have
included the number of clusters produced, the cluster size range, the
average cluster size the standard deviation in the cluster sizes, the
median cluster and the MoJo distances with respect to the ground
truth. The ground truth clustering is also present in the table. Our
quality metrics for the clusterings are extremity, authoritativeness
and stability as proposed in reference [19].

Our approach produces balanced clusterings thus demonstrat-
ing low extremity compared to the other clusterings, producing a
number of clusters that is close to the ground truth with smaller
standard deviation in the cluster sizes than the other clustering
methods, without knowing the number of clusters a priori. Besides
this, it gives balanced clusters with respect to Median Cluster crite-
rion. Note that acdc, which takes into account only the structural
properties of the files, produced a high granularity clustering that
failed to catch the structure of Linux. In the authoritativeness cri-
terion, our approach outperforms the other clusterings in terms
of MoJo distance being very close (smaller is better) to the ground
truth, with small standard deviation, posing great stability in the
resulting clusterings. Closing, the other clustering methods gave
disappointing MoJo distances even with a fixed number of clusters.

5 CONCLUSIONS
This paper is set out to show how we can use a combination of
vector semantics and information from the call graph in order to
produce meaningful clusterings of a software system. We have
outperformed state-of-the-art software clusterings and conven-
tional agglomerative clustering algorithms in terms of extremity,
authoritativeness and stability without even knowing the number
of clusters of the ground truth. This evidence supports the further
usage of vector semantics and the call graph for architecture re-
covery. Finally, the further integration with static analyzers and
the development of evaluation policies with users should be taken
into account, especially when dealing with old codebases lacking
technical documentation.



Software Clusterings with Vector Semantics and the Call Graph ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] Periklis Andritsos and Vassilios Tzerpos. 2005. Information-theoretic software

clustering. IEEE Transactions on Software Engineering 2 (2005), 150–165.
[2] Pooyan Behnamghader, Duc Minh Le, Joshua Garcia, Daniel Link, Arman Shah-

bazian, and Nenad Medvidovic. 2017. A large-scale study of architectural evo-
lution in open-source software systems. Empirical Software Engineering 22, 3
(2017), 1146–1193.

[3] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 2008, 10 (2008), P10008.

[4] Daniel Defays. 1977. An efficient algorithm for a complete link method. Comput.
J. 20, 4 (1977), 364–366.

[5] Anderson Derek. 2018. wordninja. https://github.com/keredson/wordninja.
[6] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,

dynamics, and function using NetworkX. Technical Report. Los Alamos National
Lab.(LANL), Los Alamos, NM (United States).

[7] MatthewHonnibal and InesMontani. 2017. spacy 2: Natural language understand-
ing with bloom embeddings, convolutional neural networks and incremental
parsing. To appear (2017).

[8] Fragkiskos D Malliaros and Michalis Vazirgiannis. 2013. Clustering and com-
munity detection in directed networks: A survey. Physics Reports 533, 4 (2013),
95–142.

[9] Onaiza Maqbool and Haroon Babri. 2007. Hierarchical clustering for software
architecture recovery. IEEE Transactions on Software Engineering 33, 11 (2007).

[10] Marios Papachristou. 2019. Linux Kernel 4.21 Call Graph. https://doi.org/10.
5281/zenodo.2652487

[11] Marios Papachristou. 2019. Software Architecture with Document Embeddings
and the Call Graph Source Code. https://doi.org/10.5281/zenodo.2673033

[12] Radim Rehurek and Petr Sojka. 2011. Gensim – Statistical Semantics in Python.
(2011).

[13] Robert R Sokal. 1958. A statistical method for evaluating systematic relationship.
University of Kansas science bulletin 28 (1958), 1409–1438.

[14] Diomidis Spinellis. 2010. CScout: A refactoring browser for C. Science of Computer
Programming 75, 4 (2010), 216.

[15] Vassilios Tzerpos and Richard C Holt. 1999. MoJo: A distance metric for software
clusterings. In Reverse Engineering, 1999. Proceedings. Sixth Working Conference
on. IEEE, 187–193.

[16] Vassilios Tzerpos and Richard C Holt. 2000. ACDC: an algorithm for
comprehension-driven clustering. In Reverse Engineering, 2000. Proceedings. Sev-
enth Working Conference on. IEEE, 258–267.

[17] Vassilios Tzerpos and Richard C Holt. 2000. On the stability of software clus-
tering algorithms. In Program Comprehension, 2000. Proceedings. IWPC 2000. 8th
International Workshop on. IEEE, 211–218.

[18] Joe H Ward Jr. 1963. Hierarchical grouping to optimize an objective function.
Journal of the American statistical association 58, 301 (1963), 236–244.

[19] JingweiWu, Ahmed EHassan, and Richard CHolt. 2005. Comparison of clustering
algorithms in the context of software evolution. In Software Maintenance, 2005.
ICSM’05. Proceedings of the 21st IEEE International Conference on. IEEE, 525–535.

https://github.com/keredson/wordninja
https://doi.org/10.5281/zenodo.2652487
https://doi.org/10.5281/zenodo.2652487
https://doi.org/10.5281/zenodo.2673033

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	4 Results, Evaluation & Discussion
	5 Conclusions
	References

