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a b s t r a c t 

Online Social Media platforms, such as Facebook and Twitter, enable all users, independently of their 

characteristics, to freely generate and consume huge amounts of data. While this data is being exploited 

by individuals and organisations to gain competitive advantage, a substantial amount of data is being 

generated by spam or fake users. One in every 200 social media messages and one in every 21 tweets 

is estimated to be spam. The rapid growth in the volume of global spam is expected to compromise 

research works that use social media data, thereby questioning data credibility. Motivated by the need 

to identify and filter out spam contents in social media data, this study presents a novel approach for 

distinguishing spam vs. non-spam social media posts and offers more insight into the behaviour of spam 

users on Twitter. The approach proposes an optimised set of features independent of historical tweets, 

which are only available for a short time on Twitter. We take into account features related to the users 

of Twitter, their accounts and their pairwise engagement with each other. We experimentally demonstrate 

the efficacy and robustness of our approach and compare it to a typical feature set for spam detection in 

the literature, achieving a significant improvement on performance. In contrast to prior research findings, 

we observe that an average automated spam account posted at least 12 tweets per day at well defined 

periods. Our method is suitable for real-time deployment in a social media data collection pipeline as an 

initial preprocessing strategy to improve the validity of research data. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

Online social media is one of the defining phenomena in this

technology-driven era. Platforms, such as Facebook and Twitter,

are instrumental in enabling global connectivity. 2.46 billion users

are estimated to be now connected and by the year 2020 one-

third of the global population will be connected [1] . Users of these

platforms freely generate and consume information leading to un-

precedented amounts of data. Several domains have already recog-

nised the crucial role of social media analysis in improving pro-

ductivity and gaining competitive advantage. Information derived

from social media has been utilised in health-care to support ef-

fective service delivery [2,3] , in sport to engage with fans [4] , in

the entertainment industry to complement intuition and experi-

ence in business decisions [5] and in politics to track election pro-

cesses, promote wider engagement with supporters [6] and predict

poll outcomes. However, alongside the benefits, the rapid increase

in social media spam contents questions the credibility of research
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ased on analysing this data. A report by Nexgate [7] estimates

hat on average one spam post occurs in every 200 social media

osts and a more recent study reports that approximately 15% of

ctive Twitter users are automated bots [8] . The growing volume

f spam posts and the use of autonomous accounts (social bots)

o generate posts raises many concerns about the credibility and

epresentativeness of the data for research. 

In this study, we focus on Twitter and we propose a novel,

ffective approach to detect and filter unwanted tweets, comple-

enting earlier approaches in this direction [8–11] . Previous stud-

es rely on historical features of tweets that are often unavailable

n Twitter after a short period of time, hence not suitable for real-

ime use. Our approach utilises an optimised set of readily avail-

ble features, independent of historical textual features on Twit-

er. The employed features are categorised as related to the Twitter

ccount , the user or referring to the pairwise engagement between

sers. A number of machine learning models have been trained.

ecursive feature elimination has been employed in order to as-

ertain the robustness and the discriminative power of each fea-

ure. In comparison to an earlier study [9] , the proposed features

xhibit stronger discriminative power with more consistent perfor-

ance across the different learning models. Spam posting users

xhibit some evasive tactics, such as posting on average of 4 tweets
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er day, and tricks to balance the follower–followee relationship

9] . Our analysis shows that an average automated spam posting

ccount posts at least 12 tweets per day within well-defined ac-

ivity periods. The activity pattern resembles the staircase function

xhibiting surges of intermittent activities. Our study contributes

a) a new set of lightweight features suitable for real-time detec-

ion of spammers on Twitter and (b) an additional dataset source 1 

ffering an insight into the behaviour of spam users on Twitter to

upport further studies. 

The paper is structured as follows: Section 2 offers a high-level

verview of spamming on social media and Section 3 presents a

urvey of the relevant literature. The Dataset and the feature se-

ection process are presented in Sections 4 and 5 , respectively.

ection 6 presents the experimental results and Section 7 discusses

elevant findings. Finally, Section 8 concludes this work and sug-

ests some directions for further future research. 

. Online social media spamming 

Online spamming activities come in different forms such as

alware dissemination, posting of commercial URLs, fake news or

busive contents, automated generation of large volume of con-

ents [8] and following or mentioning random users [9] . Another

orm of online spamming is the growing use of machine learning

odels to generate fake reviews on products and services [12] and

he use of social bots to influence the opinion of users [13] . The

olume of global spam is growing tremendously, with an esti-

ated rate of 355% in 2013 [7] . Specifically on Twitter, for every 21

weets, one is spam and about 15% of active users are autonomous

gents, i.e. social bots [8] . The growth rate of spam volume can be

ttributed to the lack of physical contact between the communi-

ating parties. This makes it difficult to ascertain the actual iden-

ity of the user and the legitimacy of the contents being posted.

vidently, utilising data directly from social media platforms with-

ut effective filtering may mislead the analysis and lead to wrong

onclusions due to unrepresentative data. Numerous sophisticated

pproaches have been developed in this direction and are reviewed

n Section 3 . However, at the same time, spammers evolve rapidly

o evade detection systems. As a result, some approaches may be

endered obsolete and ineffective in responding to the new tricks

ntroduced by the spammers. 

. Literature review 

Spam entails any form of activity that causes harm or disrupts

ther online users. The increasing amount of spam tweets can be

ttributed to humans’ inclination to spread misleading information,

ven if such information originated from unreliable sources, such

s a social bot account. Recently, Vosoughi et al. [14] discover that

oth genuine and false news spread at equal rate. False news on

witter spread rapidly. Social bots are deployed to accelerate the

rocess and human users further amplify the content. To detect

pam tweets, numerous detection systems have been proposed, us-

ng various techniques that are reviewed in this section. 

The pioneering work of Wang [15] on spam detection utilised

irected graph models to analyse follower friend relationships on

witter and define feature sets for effective spam detection. In

road context, approaches for spam detection can usually be clas-

ified under the following categories: social graph analysis [16–18] ,

ext analysis and activity patterns [19] , analysis of user profile

eta-data, URL usage and the effect of URL obfuscation [20–22] ,
1 We are not able to provide the fully-hydrated tweets, i.e. accompanied with full 

etails, due to sharing restrictions but we provide the relevant IDs and computed 

eatures. 

h  

f  

n  

t  

c  
nalysis of interaction behaviour [8,9,23] , and URL blacklisting and

ts effect [24] . 

Recently, in November 2017, Twitter increased the maximum

umber of characters in a tweet for most users, after just over a

onth of testing [25] . Up to that time, users were limited to 140

haracters per tweet thereby making URLs and URL shortening ser-

ices widespread. Thomas et al. [20] and Lee and Kim [21] anal-

sed streams of URLs used by spam users and studied how spam-

ers exploit URLs obfuscation to redirect users to malicious sites.

rier et al. [24] analysed a large number of distinct URLs point-

ng to blacklisted sites due to their involvement in scam, phish-

ng and malware activities. Although the approach is effective, it

s often slow and fails to detect URLs that point to malicious sites

ut have not been blacklisted previously. Gao et al. [19] also stud-

ed URL usage on Facebook to detect spamming activity and ob-

erved that this form of spamming is mostly associated with com-

romised accounts rather than accounts created solely for spam

ctivity. Benevenuto et al. [22] studied the statistical properties of

ser accounts and how URL shortening services affect spam de-

ection mechanisms. However, the universal use of URLs and URL

hortening by the vast majority of Twitter users makes it difficult

o directly identify potentially nefarious links on a large scale. In

eneral, the use of URLs relies on historical information, limiting

he possibilities for real-time detection. 

Danezis and Mittal [18] utilised a social network model to in-

er legitimate user accounts that are being controlled by an adver-

ary. Lee et al. [9] created social honeypot accounts mimicking naive

witter users to entice spam posting users. Users who fall prey by

ngaging with these accounts are assumed to be in violation of

sage policy. Users identified using this method were analysed to

istinguish different user types focusing on link payloads and fea-

ures that can capture the dynamics of follower-following networks

f users. Varol et al. [8] employed many features related to users,

ontent and the network to develop a system for social bot account

etection. 

Sedhai and Sun [26] analyse the distribution of spammy words,

.e. terms with higher probability of occurrence in spam than in

on-spam tweets, in tweets to detect spam. Chen et al. [27] pro-

ides an in depth analysis of deceptive words used by spammers

n Twitter. The work of Chen et al. [28] is motivated by Twitter

pam Drift , i.e. the property of statistical features of spam tweets to

hange over time. Twitter Spam Drift is caused because spammers

ontinuously adopt and abolish various evasive tricks. Features re-

ated to this phenomenon were utilised in training machine learn-

ng classifiers. Li and Liu [29] analysed how the effect of unbalance

atasets can be mitigated in detection tasks. 

Standard machine learning methods are sometimes consid-

red as inadequate in capturing the variability of spamming be-

aviour. Wu et al. [30] utilised a deep learning technique based

n Word2Vec [31] to capture the variation of spam-related chal-

enges. While it is essential to allow detection models to continu-

usly learn features strong enough to distinguish spam from non-

pam, methods that solely rely on textual information are be in-

dequate to draw the distinction between a habitual spam posting

ccount and a non-spam posting account. Hand-crafted features re-

ated to the account and the user need to be considered. In this

tudy, a set of hand-crafted features are leveraged in tandem with

eatures learn by deep neural networks. Features studied by hu-

ans and encoded to classifiers can achieve better performance

nd low false positive rates [32] . 

The use of a large number of features introduces extra over-

eads to the detection system, some of which may be unavailable

or real-time use. Subrahmanian et al. [13] offer insights into tech-

iques utilised in identifying influence bots , i.e. autonomous enti-

ies determined to influence discussions on Twitter. Influence bots

omprise a category of social bot accounts that seek to assert in-
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Table 1 

Summary of datasets: The size of original data refers to data collected before some preliminary preprocessing 

steps such as discarding non-English tweets and duplicates. 

Dataset Size of original data Size of preprocessed datasets Class Collection Verified? 

Honeypot 19,297 19,276 Legitimate Automated No 

Honeypot 23,869 22,223 Polluter Automated No 

SPD automated 10,318 8515 Legitimate Automated Yes 

SPD automated 25,568 9831 Spam Automated No 

SPD manual 20 0 0 1300 Legitimate Manual Yes 

SPD manual 20 0 0 700 Spam Manual No 
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fluence on topical or new discussions thereby generating unrepre-

sentative or fake data. 

The surveyed studies on spam detection largely rely on either

historical tweets of a user to extract features which contribute to

an extra overhead for the detection system [33] or limited features

learnt by unsupervised techniques. Our proposed approach relies

on readily available features in real-time for better performance

and wider applicability. 

4. Dataset 

This section discusses the collection and validation of datasets

utilised in our experiments: Honeypot , the automatically annotated

spam-posts detection dataset (SPD automated ) and the manually an-

notated spam-posts detection dataset (SPD manual ) . Table 1 presents

statistics about these datasets. The Honeypot dataset [9] is publicly

available and useful for studying spam activity on Twitter. It was

utilised both as a dataset per se and for collecting the SPD datasets

using keywords. Keywords play a crucial role in retrieving specific

documents from large corpora [34] and this study speculates that

keywords extracted from the Honeypot dataset can be used in re-

trieving large quantities of similar data. 

In Table 1 , Legitimate refers to data from genuine users whose

accounts have been verified by Twitter. A verified account is cer-

tified by Twitter to be genuine and such information is available

from the meta-data section of the tweets. In contrast to the ran-

domised approaches utilised in [9] to ascertain user legitimacy on

Twitter, we used accounts verified by Twitter in building the legit-

imate part of the SPD datasets to avoid the potential risk of a high

false positive rate. 

SPD manual is a manually annotated dataset created to supple-

ment evaluation. It contains tweets randomly selected from the full

set of tweets that have been downloaded between February, 2017

and June, 2017 via the traditional Twitter API 2 using relevant key-

words as query terms. It consists of 1700 tweets of legitimate users

and 300 tweets of spam users . 

For our analysis, we took a sample of 20 0 0 accounts for man-

ual annotation resulting in the disproportionate ratio of 70 0:130 0

(spam:non-spam). Unbalanced datasets often affect the perfor-

mance of detection systems [29] , including ours. To mitigate that,

we applied the SMOTE resampling technique [36] to balance the

data by upscaling the minority class. Additionally, we further query

the accounts of spam users to retrieve more spam tweets. This

technique was used before training Word2Vec. The cost and labour

intensiveness of annotations as well as the general unbalanced ra-

tio of spam/non-spam on Twitter contributes to this disproportion-

ate ratio in SPD manual . 

SPD automated contains tweets that have been collected between

February, 2017 and June, 2017, and have been automatically

marked as legitimate or spam. Tweets posted by users whose ac-

counts have been verified as Legitimate by Twitter were marked
2 The dedicated channel provided by Twitter to enable access to public datasets 

[35] . 

d  
s legitimate. Tweets that contained at least two of the most

epresentative keywords in the Polluter part of the HoneyPot

ataset were marked as spam. 

Keywords, both for querying Twitter and validating spam, are

btained by applying Latent Semantic Analysis (LSA) on the Hon-

ypot dataset [37] . LSA is useful in capturing the semantics and

elevance of terms to a document [38] . Prevalent keywords from

SA concepts include free, new, lots, win, follow, trade, good, great,

ake, create, twitter, followers, check,gain, buy, account, get, making,

nline, want . See Table A.2 for full list. A block diagram of the col-

ection and validation process is shown in Fig. 1 . Table 2 shows

ome example tweets that satisfy this criterion. 

.1. Validation of SPD automated 

Labelling data in SPD automated as spam is based on the hypothe-

is that spam users are more likely to use at least two of the terms

btained via LSA on the part of the Honeypot dataset that is known

o be spam [9] . To validate this, we compute and compare in the

egitimate and the spam part of SPD automated : 

• the distribution of the co-occurring keywords 
• lexical richness and lexical density 
• the distributions of user mentions and URLs 

Table 4 shows the results. 

.1.1. Distribution of co-occurring keywords 

Spammers heavily leverage certain deceptive words to lure

sers [27] . Words normally preceded by free, follow and gain have

igh probability of occurrence in spam tweets [26] . 

In this study, we aim to capture important n-grams used by

pammers by leveraging a public spam dataset. To select the best

-grams as well as the number of co-occurring terms sufficient for

dentifying spam tweets, we first apply Latent Semantic Analysis

LSA) as a decomposition technique to discover the most represen-

ative keywords in the corpus and compared with a list of known

pammy words 3 . Based on the list of spammy words, we compute

he relative frequencies of various spammy n-grams (bigrams, tri-

rams and four-grams) in the corpus. Table 3 shows the relative

requencies of spammy n-grams in various datasets. Fig. A.3 shows

n example of common spammy n-grams . In Table 3 we observe

hat bigrams have higher relative frequencies in spam datasets and

he individual terms that they consist of occur in the spammy list,

n Table A.1. Accordingly, a tweet is highly probable to be a spam if

t contains at least bigrams of spammy words and has low lexical

ichness. 

We observe in Table 4 that only 1.05% of the tweets in the le-

itimate part of SPD automated contain two or more keywords, ex-

racted using LSA from the Polluter part of the HoneyPot dataset.

n contrast, more than 89.5% of the tweets in the spam part of

PD automated contain keyword pairs. This distribution is a strong in-

icator of a probable spam tweet and also minimises the risk of
3 Compiled by Sedhai and Sun [26] and shown in Table A.1, in the Appendix. 
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Fig. 1. Collection and validation of the spam part of the SPD automated dataset from Twitter. 

Table 2 

Examples of collocational bigrams from the spam part of SPD automated . Keywords returned by LSA on the Honeypot dataset 

are shown in bold face. Actual users mention were replaced with the ‘ user ’ placeholder to preserve anonymity. 

Table 3 

Relative frequencies of n-grams that consist of some spammy words in the 

dataset; in particular the n-grams B1, B2, T1, T2, F1 and F2, that are shown in 

bold face in table A.1. 

Dataset N-gram proportions 

Bigrams Trigrams Four-grams 

Honeypot spam B1: 1 . 26 × 10 −3 T1: 1 . 83 × 10 −3 F1: 4 . 40 × 10 −4 

B2: 3 . 51 × 10 −4 T2: 0.0 F2: 0.0 

Honeypot non-spam B1: 4 . 07 × 10 −4 T1: 2 . 50 × 10 −4 F1: : 0.0 

B2: 3 . 3 × 10 −3 T2: 0.0 F2: 0.0 

SPD spam B1: 6 . 04 × 10 −2 T1: 1 . 05 × 10 −2 F1: 6 . 42 × 10 −3 

B2: 2 . 21 × 10 −2 T2: 2 . 87 × 10 −2 F2: 4 . 74 × 10 −3 

SPD non-spam B1: 2 . 34 × 10 −7 T1: 0.0 F1: 0.0 

B2: 0.0 T2: 0.0 F2: 0.0 
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abelling legitimate users as spammers. Table 2 shows examples of

requent co-occurring keywords sampled from SPD automated . 
Table 4 

Percentage distributions of relevant metrics co

i.e. legitimate and spam. 

Data % name % digits % co

similarity in names spa

Legitimate 82.59 14.07 1.05

Spam 26.27 88.84 89.5
.1.2. Lexical richness and density 

In quantitative linguistics, lexical richness measures the wealth

f vocabulary in a given text [39] . Basic measures, such as Type

oken Ratio (TTR) and Mean Word Frequency , are utilised to assess

he quality of lexicons in spam and non-spam corpora. We hypoth-

sise that spam users will have low lexical diversity and sophisti-

ation compared to genuine users. Legitimate users are expected to

se rich and diverse lexicons in tweets depending on the discus-

ion topic. In contrast, spam users focus on specific targets such as

romoting a certain product or marketing to increase the number

f their followers. Users engaging with this behaviour are highly

ikely to recycle specific sets of similar words. 

Type-token ratio (TTR) measures the richness of a lexicon in a

ocument [40] . It is useful in understanding how distinct words

re utilised in the legitimate and the spam part of SPD automated . For

 dataset D, TTR can be computed as follows: 

 T R = 

unique tokens in D 

(1) 

tokens in D 

mputed in the two parts of SPD automated , 

ntaining % LexRich % LexRich 

m bigrams unfiltered filtered 

 97.43 86.74 

1 90.94 49.46 
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Fig. 2. An overview of Twitter: three different categories of attributes that support 

global interconnectivity of users are shown. The features utilised in this study are 

derived from these categories directly or indirectly. 
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We also compute lexical density (LD) [40] as follows: 

LD = 

words in D excluding stopwords 

tokens in D 

(2)

Table 4 shows the result of computing these metrics in both

datasets. 

However, lexical richness is insufficient for the purpose, because

it does not capture term semantics [41] . Some spammy words are

not exclusive to spammers,as non-spam users may also use them

in different context. To capture the semantics of words in spam

and non-spam datasets, we experimented with word embeddings

as classification features. Table 10 shows evaluation results of var-

ious classifiers trained on word embedding features and features

without word embeddings and tested on SPD automated . Table A.3

summarises the datasets used in training our Word2Vec model

[31] . 

4.1.3. Users mention 

Random mentioning of users [42] is a common tactic employed

by spammers in an effort to expand the visibility or their network

of followers [9,23] . In Table 4 , lexical richness, i.e. %LexRich (unfil-

tered) , in the spam set is marginally higher than expected. Noting

the high proportion of user mentions in spam data, lexical richness

(% LexRich (filtered)) or lexical density is computed without consid-

ering the user mentions and URLs in both datasets. The computa-

tion in the spam dataset led to a very low score suggesting that

the large number of user mentions and URLs are responsible for the

relatively high TTR score in the spam dataset. 

TTR in the legitimate dataset is not affected by filtering out user

mentions and URLs and is indicative of the richness and diversity of

the lexicon used by genuine users. The low TTR score in the spam

dataset indicates that the same words are being used repetitively

usually not really matching the discussion topic. Table 4 also shows

metrics related to naming conventions by computing the degree of

similarity between the username and the screenname of each user

and the proportion of digits in their names. This topic is discussed

further in Section 5 . 

5. Features 

The Twitter platform facilitates global connections and interac-

tions of diverse users [43] . Fig. 2 presents an overview of the plat-

form and its relevant attributes that enable users to connect and

form the basis of our feature extraction. 
.1. Accessibility, dynamism and categorisations of features 

Tweets are available only for a short time, approximately seven

ays, after being posted. Many real time spam detection systems

hat rely on historical features from past tweets, are affected by

his constraint and may be practically less effective. Readily avail-

ble, dynamic features offer an enhanced opportunity to distin-

uish spam from non-spam tweets in real-time. To leverage this

otential, features are categorised as follows: 

• User Profile Features (UPF) include information about the user,

such as their user name, screen name, location and description 
• Account Information Features (AIF) consist of information such as

account creation time (account age) and account verification flag

(verified or not verified) 
• Pairwise engagement features subcategorised into: 

• Engage-with Features (EwF) include features that describe

user activities on Twitter and users can influence or choose

how to alter their values. Features under this group include

friends count, statuses count, tweet type, tweet creation time,

tweet creation frequency , etc. 
• Engaged-by Features (EbF) are similar to features in the EwF

group . The main difference is that features under this group

cannot be influenced by users directly. For instance, a user

relies on other users to increase their favourites count or to

attract more followers . Features in this group include follow-

ers count, favourites count, number of retweet (RT) , etc. 

Furthermore, features can be classified as basic features or de-

ived features . The aforementioned features, i.e. under UPF, AIF, EwF

nd EbF , are basic features, whereas derived features are computed

sing two or more basic features or are based on further analy-

is, e.g. sentiment analysis or entropy computation on textual data.

eatures can also be characterised as static or dynamic . Static fea-

ures cannot be changed once the account is created e.g. user ID

nd account creation time , whereas dynamic features keep changing

epending on the user’s level of engagements on Twitter e.g. sta-

uses count . All features and their properties are shown in Table 5 . 

.2. Feature selection 

The early work of Qazvinian et al. [43] categorises features for

witter-based study into content-based, network-based and Twit-

er spec ific memes . These categorisations are further expanded in

ig. 2 and were utilised directly or indirectly in previous related

tudies [8,15,20–22] . Statistical properties of tweet metadata in re-

ation to user, accounts and URLs usage have been effective in

pam detection systems [22] . Based on this categorisation, basic

eatures have been analysed for various Twitter-related tasks. For

nstance, basic features on Twitter have been analysed to detect

imple social bots accounts which lack or repeat basic account in-

ormation such screen names, profile picture [23] . Retweets, user

entions and low reciprocity of friendship [8] or the dynamism

f follower-following networks overtime [9] have also been inves-

igated. The sophistication level of automated accounts on Twitter

aries from random following and re-tweeting to advanced social

ots that actually generate content. Studies that focus on the de-

ection of such accounts rely on basic features on Twitter to define

omplex ones [13] . Varol et al. [8] developed a detection frame-

ork by leveraging numerous features. Our study takes a simi-

ar direction by defining a novel set of additional features derived

rom the basic ones, that have been discussed and exploited in

any studies concerning Twitter. The choice of features for ex-

erimentation is informed by insights gained from a series of ex-

loratory analysis to understand the distribution of textual fea-

ures, the composition of data, and the dynamism of features, such

s statuses count, friends count, followers count, favourites count,
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Table 5 

Features proposed and used in the current study, the corresponding groups and definitions. The VerifiedAccount feature, f 22 , was excluded form our final feature set, 

because in preliminary experiments it was shown to cause overfitting. 

Id Features Groups Status Description/Definition 

f 1 AccountAge AIF Static Days since account creation to date of collection 

f 2 FollowersCount EbF Dynamic In user profile meta-data 

f 3 FriendsCount EwF Dynamic In user profile meta-data 

f 4 StatusesCount EwF Dynamic In user profile meta-data 

f 5 DigitsCountInName UPF Static Number of digits in screen name 

f 6 TweetLen EwF Dynamic Number of characters in tweet 

f 7 UserNameLen UPF Static Number of characters in user name 

f 8 ScreenNameLen UPF Static Number of characters in screen name 

f 9,10,11,12 Metric entropy for all textual features: tweet, 

user profile description, user name and 

screen name, respectively 

UPF Dynamic To measure randomness in text. H(x ) 
| x | : where | x | is 

the length of a string, x , and H ( x ) is the Shannon 

entropy of text: 
∑ 

i =1 ..k p i log 2 p i | x | 
f 13 URIsRatio EwF Dynamic | characters in URLs | 

| tweet length | 

f 14 MentionsRatio EwF Dynamic | characters in user mentions | 
| tweet length | 

f 15 NameSim UPF Static % proportion of similarity in User name and Screen 

name 

f 16 LexRichWithUU EwF Dynamic TTR in tweets: 
| token types | 
| total tokens | ∗ 100 

f 17 Friendship EwF Dynamic FriendsCount 
Fol l owersCount 

f 18 Followership EbF Dynamic Fol l owersCount 
FriendsCount 

f 19 Interestingness EbF Dynamic Fa v ourit esC ount 
StatusesCount 

f 20 Activeness EwF Dynamic StatusesCount 
AccountAge 

f 21 LexRichWithOutUU EwF Dynamic | lexical worlds | 
| total number of words | ∗ 100 

f 22 VerifiedAccount ∗ AIF Static In tweet metadata 

f 23 FavouritesCount EwF Dynamic In user profile meta-data 

f 24 NamesRatio UPF Static 
| screenname length | 
| username length | 

Fig. 3. Example of activity patterns of spam-posting social bot accounts. All sub-figures depict hyperactive automated users that generated very high traffic within a short 

period. The activity distribution over time for most users resembles the staircase function. Some users generate much higher traffic than other, e.g. Activity4 and Activity6 

represent many times more tweets than Activity5 . 
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aming conventions and tweeting patterns . Figs. A.1 and A.2 in the

ppendix present further exploratory results. 

Account age is useful in capturing the frequency of user activity.

rom our analysis, accounts with very high statuses and friends

ount but low favourites count and followers count at young age

re likely to be automated spam posting accounts. For example,

ig. 3 shows huge amounts of content generated within short pe-

iod. We utilised these observations in deriving features, such as

ctiveness, Interestingness and Followership , as shown in Table 5 . 

Naming conventions: The Username and screenname of a Twitter

ser usually exhibit a high degree of similarity. Normally, screen-

ames of legitimate users contain segments of the username , are

ot very lengthy and rarely begin with a digit. In some cases, user-

ames of legitimate users contain a reasonably small number of

igits in the middle or at the end. In spam accounts, the mix of

etters, digits, special characters and unusual symbols is much
ore widespread. Often, names begin with digits or email ad-

resses and, as shown in Table 4 , there is high discrepancy be-

ween usernames and the corresponding screenname . Features, such

s NameSim and NamesRatio , in Fig. 5 , are inspired by this analysis.

ther static features in the metadata of a user account on Twitter,

uch as the Language and Location fields, may be useful to some

xtent for identifying spam accounts, due to the fact that most of

hese fields are either vacant or populated with meaningless con-

ent for spam users. Genuine users often report a real location

ame, but spam posting accounts often return irrelevant content

r lengthy and unintelligible sequences of characters or just email

ddresses. 

Tweeting activity and posting behaviour: In an earlier study, spam

osting users have been observed to post four tweets per day

n average [9] . We observed that an automated spam posting ac-

ount posts on average at least 12 tweets per day at well-defined
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Fig. 4. Example of activity patterns of two legitimate users. 
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4 In the preliminary stages of this study, we experimented with many more fea- 

tures, mainly derived as combinations of the features in Fig. 6 . Most of these fea- 

tures were discarded due to correlating almost perfectly with others and, thus, not 

contributing to the accuracy of the model. 
periods. Usually, activity levels remain constant within approxi-

mately four long-lasting periods. Figs. 3 and 4 show examples of

spam and legitimate user activity patterns from our June 2017 col-

lection, respectively. 

In contrast to automated spam-posting users, a legitimate user

of Twitter often follows random usage patterns and takes long

breaks of inactivity. Fig. 4 represents the activity patterns of two

different users with relatively low traffic generation within the

same period as the users in Fig. 3 . Table 5 shows the features

proposed for prediction model training, the corresponding feature

groups and definitions. 

The VerifiedAccount feature, labelled as f 22 , takes on binary val-

ues, ‘1’ for verified accounts or ‘0’ otherwise. These values reflect

the target labels in the user profile meta-data. The feature was

used in the feature set for training classification models during our

early experiments. The resulting model overfitted the training data

and, for this reason, the feature was later removed due to its role

in leaking the correct prediction into the test data [44] . 

It is crucial for detection models to be able to continuously

and automatically learn features strong enough to distinguish spam

from non-spam, avoiding handcrafted features. Wu et al. [30] re-

port good performance of a spam detection system that learns

suitable features using Word2Vec. However, such methods rely on

textual information, only. Social media, including Twitter, offer a

wealth of information other than the textual content that are im-

portant to draw the distinction between a habitual spam posting

account and a non-spam posting account. To improve the clas-

sification, we define and experiment with a set of handcrafted

features, including features about the account and the user that

posted each tweet. 

Handcrafted features can be used in tandem with features learn

by deep neural networks. Our study follows similar approaches to

spam detection systems [26,28,30] by adopting the unsupervised

paradigm. Unsupervised methods effectively counter the effect of

Twitter Spam Drift , which affect detection systems [28,30] , by cap-

turing the variability of spammer behaviour effectively. Sedhai and

Sun [26] used a semi-supervised framework for spam detection at

tweet level, whereas Chen et al. [28] used both traditional machine

learning on handcrafted features and deep learning to automati-

cally learn some key features. We experimented with both hand-

crafted features and features learnt by deep learning models and

compare their performance, as shown in Table 10 . To account for

full variability, the more handcrafted features are used, the better

the classification performance and the lower the false positive rate

[32] . Significant performance improvements were achieved at dif-

ferent levels in our study. 
. Experimentation and results 

This section discusses the experimental procedure and the re-

ults obtained. All experiments are conducted using the Scikit-

earn toolkit [45] . 

.1. Parameter tuning and classification models 

An effective classifier should be able to correctly classify previ-

usly unseen data by leveraging the experience gained from train-

ng on n labelled samples, i.e. data instances and the correspond-

ng class. The target of the classification task at hand is to predict

pam-posting users or normal legitimate users correctly, by access-

ng one of their tweets associated with user account meta-data.

ffective hyper-parameter tuning is key for significantly improving

he performance of machine learning models [46] . Thus, we tuned

he hyper-parameter values of all classification models, used in ex-

eriments of our study, via grid search on standard 10-fold cross-

alidation. 

.2. Feature importance and correlation 

During an initial analysis stage, a large number of features have

een used for training and some features were discarded due to

heir relatively low contribution to the overall performance. Figs.

.1 and A.2 in the Appendix provide more evidence about the fea-

ure selection process. A recursive feature elimination approach

as adopted to measure the contribution of each feature to the

verall performance. The results of this process are graphically il-

ustrated in Fig. 5 . 

Correlation analysis plays a crucial role in achieving optimum

erformance. Features that correlate perfectly introduce redun-

ancy and do not add extra information into classification mod-

ls [47] . We conducted univariate feature analysis to understand

he relevance of each feature in predicting the target class. The re-

ults are shown in Fig. 6 formatted as a heat-map to visualise as

olour intensity the correlation degree of each feature with the tar-

et class, i.e. AccountClass , and with other features. With the excep-

ion of lexical richness, LexRichWithUU , and lexical density, LexRich-

ithOutUU , which are derived from same root, there is no other

air of features with perfect correlation. Thus, the features shown

n 6 comprise our feature set for all experiments in this paper. 4 

he main diagonal of the heatmap matrix represents perfect corre-

ation because each feature is correlated with itself. The column of

he target (AccountClass) shows the intensity of the correlation of

ach feature with the target. 

.3. Performance metrics 

For evaluation, different metrics are utilised in order to avoid

ny type of bias towards the majority class, especially when the

ataset is imbalanced [48] . In particular, we use the following met-

ics to summarise experimental results: F-score, Precision, Recall,

ccuracy , the Receiver Operating Characteristics (ROC) curve and the

rea under the ROC curve (AUC). F-score , the geometric mean of Pre-

ision and Recall , captures a model’s prediction quality especially

n sensitive areas, by requiring both Precision and Recall to be high.

he AUC offers a more encompassing metric, insensitive to the im-

alance between classes that sometimes provides better evalua-

ion than accuracy [49] . Specifically, the higher the AUC score, the

arger the area under the curve, well above the diagonal, e.g. Fig. 7 .
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Fig. 5. This figure shows the performance of features measured using recursive feature elimination. The most informative feature is the lexical richness of tweets including 

user mentions and URLs (LexRichWithUU) . It contributed significantly to the overall performance, as evidenced from the sharp drop in the figure. The complete set of the 

features is provided in Figs. A.1 and A.2 in the Appendix. 

Fig. 6. Visual representation of the univariate analysis of correlation of each feature with the target, i.e. AccountClass and other features. Correlation magnitudes range from 

1 to −1, with 1 denoting perfect positive correlation, 0 no correlation and −1 perfect negative correlation. Features highly correlated with the target constitute the optimum 

features set. 
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5 Which is based on Support Vector Machines (SVM). SVM and SVC used inter- 

changeably in this study. 
.4. Experimental results 

We conducted a series of experiments with different classifi-

ation models and assessed them using various metrics, as dis-

ussed in Section 6.3 . Our first experiment, aimed to investigate

he effectiveness of the proposed features, which we called Spam

ost Detection (SPD) features, and compared the suitability of dif-

erent classification models for the task at hand. We trained six

ifferent classification models: Maximum-Entropy (MaxEnt), Ran-
om Forest, Extremely Randomized Trees (ExtraTrees), C-Support

ector Classification (SVC 

5 ), Gradient Boosting and Multi-layer Per-

eptron (MLP). We also included additional model i.e. SVM + MLP

hich utilises the features learnt by the MLP during training as

nput for training regime. Fig. 7 shows the learning curves and
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Fig. 7. Performance of different classification models evaluated on the SPD automated dataset using 10-fold cross-validation. 
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corresponding AUC scores achieved by each model on the best

hyper-parameter values, as explained in Section 6.1 . All models

were trained and evaluated on the SPD automated dataset using 10-

fold cross-validation. The chart shows relative consistency in terms

of performance across the different classification models, which

can be attributed to the effectiveness of the proposed SPD features.

Gradient Boosting is chosen for subsequent use in our next experi-

ments due to its higher performance. 

Our second experiment compared the features proposed in this

study, SPD features, with the Honeypot features, proposed in Lee

et al. [9] . Since the study of Lee et al. [9] is our main baseline,

we compared the two feature sets on the Honeypot dataset and

the SPD automated dataset, using 10-fold cross validation. The asso-

ciated learning curves are shown in Figs. 8 and 9 , respectively.

The figures show that SPD features perform better than the Hon-

eypot features for both datasets. The improvement is small for

the Honeypot dataset, whereas it is significant for the SPD automated 

dataset 

It should be noted that the Honeypot dataset does not provide

enough information for computing all SPD features. As a result, the

SPD features line in Fig. 8 is based on some SPD features, only. Fea-

tures such as Interestingness, Activeness, NameSim and Lexical Rich-

ness are not used in this experiment. The lack of these features

explains why the improvement in performance is minimal. 

In addition to the univariate correlation analysis of features,

we investigated the importance of features groups. Table 6 shows

the features grouped into three distinct groups: account, users and

network features. In the additional experiment with Word2Vec,

features learnt by the trained Word2Vec model and some hand-

crafted features from the study are utilised, in particular lexical

richness, activeness and interestingness. Tables 7–9 present exper-

iment results for for Honeypot, SPD automated and SPD manual , respec-

tively on various feature groups. Best performing features in each

group constitute the optimum set of features i.e. SPD selected ) for im-

proved effectiveness and efficiency. 

Similarly, Table 10 shows the performance of various clas-

sifiers on including or excluding Word2Vec features tested on

b  
PD automated . Combining Word2Vec features and lexical richness

eatures performs significantly better than the Honeypot features

aseline. The combination performs slightly worse that the op-

imised feature set but uses a much smaller number of fea-

ures. 

To address the imbalance in the SPD manual dataset, we utilised

he SMOTE technique [36] , which up-samples the minority class

uring training the classifier. We observe that the set of features

roposed in this paper, SPD , performs better than the Honeypot

9] on all datasets. The lightweight version of SPD features, as com-

uted by the feature selection process in Section 6.2 , perform bet-

er than the Honeypot feature set when applied on SPD automated 

ut worse than the Honeypot feature set when applied on Hon-

ypot and SPD manual . The lightweight version of SPD features con-

istently perform worse than the full SPD feature set, as ex-

ected. 

.5. Error analysis 

Error analysis is carried-out to investigate cases that were not

lassified correctly by the classification model. In this section, we

iscuss the reasons that may have led to misclassification of some

epresentative samples, shown in Fig. 11 

In the study, dataset that was used to design the SPD features

roposed in this study only tweets in English were considered.

s a result, some tweets in the SPD dataset, such as tweet #1 in

able 11 , were not in English and were misclassified. This can be

ttributed to the fact that although the original language field in

he meta-section of some user profiles was set as English, the ac-

ual interaction language in the tweet is not English. 

As shown in Fig. 5 , lexical richness and density are impor-

ant classification features. The occurrence of irrelevant tokens in

 tweet, which were regarded as unique, leads to a richer lexicon,

hich in turn increases the chance of classifying the tweet as le-

itimate. Tweets #2-#6 in Table 11 contain some irrelevant sym-

ols, which were counted as unique, increased the corresponding
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Fig. 8. Learning curves of the SPD features and the Honeypot features on the Honeypot dataset [9] . The SPD features achieve a slight improvement in performance. 

Fig. 9. Learning curves of the SPD features and the Honeypot features [9] on the SPD automated dataset. The SPD improve performance significantly. 
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exical score and misled the classifier. Emoticons are also a source

f confusion for the classifier, especially when computing the lex-

con of unique tokens for a tweet and its similarity to lexicons of

ther tweets. 

. Discussion 

This section presents an additional analysis of the manual anno-

ations in the SPD dataset, a description of the different user
manual 
roups and discusses the distribution of relevant features in the

ataset. 

.1. Characterising users 

A thorough inspection of the tweets in the spam and legitimate

arts of the SPD manual dataset suggests that there are two kinds of

sers on Twitter: human users and social bot (autonomous entity)

sers. Each user type consists of a legitimate (non-spam) and a

pam part, as depicted in Fig. 10 , with the following characteristics:
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Table 6 

All Features and respective feature sets. 

Feature group Features 

Account AccountAge DescriptionLen LocationLen LocationEntropy 

DescriptionEntropy 

User UserNameLen ScreenNameLen AllRatios LexicalRichness 

TweetLen URLsInTweetLen Activeness TweetEntropy 

LenAll StatusesCount URLsRatio NamesRatio 

PosSentiment NegSentiment OverallSent DescPosSent 

DescNegSent DescSentiment UserNameEntropy 

SingleHashtagInTweetLen ScreenNameEntropy 

Pairwise (Network) Engaged with : Engaged by : 

FriendsCount MentionsInTweetLen FollowersCount Interestingness 

MentionsRatio HashtagsInTweetLen Followership BidirFriendship 

Friendship HashtagsRatio BirdirFollowership 

Optimised AccountAge FollowersCount TweetLen TweetEntropy 

Friendship StatusesCount LenAll FriendsCount 

NamesRatio Interestingness NameSim Followership 

Activeness LexRichWithUU DescriptionEntropy 

BirdirFollowership 

Table 7 

Evaluation results of all combinations of classifiers and feature sets applied on the Honeypot 

dataset. ‘(0, 1)’ denotes performance on the spam part and the legitimate part of each dataset, 

respectively. 

Classifier Features Accuracy AUC Precision Recall F-score 

% % % (0,1) % (0,1) % (0,1) 

Random Forest Honeypot 94.70 96.19 (90, 93) (91, 94) (92, 92) 

SPD Selected 94.68 96.38 (93, 91) (92, 93) (93, 92) 

ExtraTrees Honeypot 93.74 96.37 (91, 91) (92, 89) (91, 90) 

SPD Selected 93.86 95.32 (89, 90) (91, 89) (90, 90) 

Gradient Boosting Honeypot 98.53 98.55 (99, 98) (98, 99) (99, 98) 

SPD Selected 98.93 98.94 (99, 99) (99, 99) (99, 99) 

MaxEnt Honeypot 83.57 83.62 (86, 81) (83, 84) (84, 83) 

SPD Selected 85.99 86.21 (90, 82) (83, 89) (86, 86) 

MLP Honeypot 89.53 89.54 (91, 88) (89, 90) (90, 89) 

SPD Selected 93.70 90.28 (91, 90) (92, 89) (91, 90) 

SVM Honeypot 86.26 86.29 (88, 84) (86, 87) (87, 85) 

SPD Selected 88.13 88.21 (90, 86) (86, 90) (88, 88) 

SVM + MLP Features Honeypot 87.57 87.62 (90, 85) (87, 88) (88, 87) 

SPD Selected 89.08 89.09 (90, 88) (89, 89) (89, 89) 
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6 Detailed in [42] . 
7.1.1. Legitimate users 

Legitimate users interact with moderate frequency, within the

reasonable and acceptable Twitter usage policy. This user group

also contains genuine multiple users , i.e. accounts managed by or-

ganisations or useful social bots . Users in this group tend to show

a proportionate interaction level and (activeness) , i.e. their statuses

count matches their account age and the tweets they post are of

interest to followers, hence exhibit high interestingness . Followers

of users in this group often outnumber friends, sometimes even

by twice as much. This is expected, since most users subscribe or

follow an account due to their interest in it. 

The username and screenname of useful social bot accounts of-

ten contain the word ‘bot’ as part of name, e.g. AIBigDataCloudIoT-

Bot and Troll Bot . In some cases, groups of screennames share the

same suffix separated by the underscore character from a descrip-

tion of the account. Accounts in this group achieve relatively high

interestingness levels and an almost equal proportion of friends

and followers. They also exhibit moderate similarity between their

username and screenname and use a wide variety of words and ex-

pressions, i.e. diverse lexicons. 

7.1.2. Spam-posting users 

Spam-posting users are hyperactive and generate irrelevant

content, potentially offensive to other users and in violation of
witter’s terms of use. 6 Accounts in this group exhibit very low

nterestingness and disproportionate activeness levels i.e. the sta-

uses count does not match the account age indicating that they

mploy flooding techniques. Friends of users in this group usually

utnumber followers. The interaction patterns of spam-posting so-

ial bot accounts are often randomised rather than well-defined,

s shown in Fig. 3 . There is also a high level of inconsistency in

aming conventions and a high dissimilarity between usernames

nd corresponding screennames . The screenname of spam-posting

ocial bot accounts is often unintelligible, mostly containing dig-

ts and special characters. Spam-posting users also exhibit low lex-

con richness due to the high proportion of URLs, retweets, and

ser mentions. Spam users generally engage in subscribing to dif-

erent conversations on Twitter (based on hashtags) and gener-

te tweets not related to the topic of discussion. Fig. 11 shows

 summary of user groups in Twitter, human and social bot, le-

itimate and spam-posting. The filtering mechanism developed in

his study was succesfully applied in the work of [50] to de-

ect and remove irrelevant posts from spam and automated ac-
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Table 8 

Evaluation results of all combinations of classifiers and feature sets applied on the SPD automated dataset. ‘(0, 1)’ denotes perfor- 

mance on the spam part and the legitimate part of each dataset, respectively. 

Classifier Features Accuracy AUC Precision Recall F-score 

% % % (0,1) % (0,1) % (0,1) 

Random Forest Honeypot 90.71 96.28 (91, 91) (92, 89) (92, 90) 

SPD Account 80.90 85.74 (86, 61) (90, 51) (88, 56) 

SPD User 85.81 91.37 (91, 69) (91, 69) (91, 69) 

SPD Network 92.06 96.70 (95, 83) (95, 82) (95, 82) 

SPD Optimised 98.46 98.87 (99, 99) (99, 99) (99, 99) 

SPD all 94.41 98.13 (96, 88) (96, 87) (96, 88) 

ExtraTrees Honeypot 90.57 96.32 (91, 91) (92, 89) (91, 90) 

SPD Account 80.53 85.85 (86, 60) (89, 54) (87, 57) 

SPD User 86.22 91.48 (89, 73) (94, 61) (91, 67) 

SPD Network 91.99 96.51 (94, 83) (94, 81) (94, 82) 

SPD Optimised 98.63 99.89 (100, 97) (97,100) (99, 98) 

SPD all 93.78 98.09 (96, 87) (96, 87) (96, 87) 

Gradient Boosting Honeypot 94.93 94.94 (96, 94) (95, 95) (95, 95) 

SPD Account 82.17 87.13 (85, 66) (93, 46) (89, 54) 

SPD User 85.74 91.82 (88, 76) (94, 57) (91, 65) 

SPD Network 91.62 96.41 (93, 85) (96, 77) (95, 81) 

SPD Optimised 98.97 99.93 (99, 98) (98, 99) (98, 99) 

SPD all 93.60 97.96 (96, 88) (97, 85) (96, 87) 

MaxEnt Honeypot 84.59 84.65 (87, 82) (84, 86) (85, 84) 

SPD Account 80.93 69.45 (86, 60) (90, 48) (88, 54) 

SPD User 81.00 68.56 (85, 61) (91, 46) (88, 52) 

SPD Network 85.37 72.35 (86, 84) (97, 48) (91, 61) 

SPD Optimised 97.12 97.13 (98, 96) (97, 98) (97, 97) 

SPD all 91.54 87.67 (94, 82) (94, 81) (94, 82) 

MLP Honeypot 89.34 89.40 (91, 87) (89, 90) (90, 89) 

SPD Account 81.85 74.49 (87, 63) (89, 60) (88, 62) 

SPD User 85.51 79.62 (91, 69) (91, 69) (91, 69) 

SPD Network 91.40 86.84 (94, 83) (95, 78) (94, 81) 

SPD Optimised 98.42 98.43 (99, 98) (98, 99) (98, 98) 

SPD all 94.17 91.83 (96, 87) (96, 88) (96, 88) 

SVM Honeypot 86.38 86.39 (88, 85) (86, 87) (87, 86) 

SPD Account 81.22 71.50 (87, 60) (89, 54) (88, 57) 

SPD User 82.08 68.54 (85, 68) (94, 43) (89, 53) 

SPD Network 87.33 75.12 (87, 89) (98, 52) (92, 62) 

SPD Optimised 97.35 97.38 (98, 97) (97, 98) (97, 97) 

SPD all 91.50 88.82 (95, 79) (94, 83) (94, 81) 

SVM + MLP Features Honeypot 88.21 88.23 (90, 87) (88, 89) (89, 88) 

SPD Account 80.69 69.04 (85, 60) (91, 47) (88, 53) 

SPD User 84.38 74.99 (88, 70) (92, 58) (90, 63) 

SPD Network 90.24 83.43 (92, 85) (96, 71) (94, 77) 

SPD Optimised 97.71 97.74 (99, 97) (97, 98) (98, 98) 

SPD all 93.70 90.95 (96, 85) (96, 85) (96, 85) 

Fig. 10. User types in the SPD manual dataset. 
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Table 9 

Evaluation results of all combinations of classifiers and feature sets applied on the SPD manual dataset. ‘(0, 1)’ denotes perfor- 

mance on the spam part and the legitimate part of each dataset, respectively. 

Classifier Features Accuracy AUC Precision Recall F-score 

% % % (0,1) % (0,1) % (0,1) 

Random Forest Honeypot 93.03 93.11 (91, 89) (89, 90) (91, 90) 

SPD Account 77.16 79.98 (75, 77) (74, 78) (75, 76) 

SPD User 84.29 92.89 (83, 84) (84, 84) (85, 85) 

SPD Network 95.43 99.74 (92, 94) (94, 92) (93, 95) 

SPD Optimised 97.79 98.03 (94, 98) (98, 94) (97, 97) 

SPD all 96.29 97.97 (93, 99) (99, 93) (96, 96) 

ExtraTrees Honeypot 99.26 99.24 (99,100) (100, 98) (99, 99) 

SPD Account 75.43 79.49 (73, 78) (78, 72) (71, 75) 

SPD User 83.54 91.86 (85, 88) (84, 90) (82, 84) 

SPD Network 95.80 97.97 (94, 96) (97, 93) (96, 96) 

SPD Optimised 97.29 99.95 (94, 98) (98, 93) (97, 97) 

SPD all 97.90 98.90 (96, 99) (73, 78) (98, 98) 

Gradient Boosting Honeypot 89.38 59.19 (35, 93) (23, 96) (27, 94) 

SPD Account 78.13 79.40 (76, 78) (78, 75) (77, 76) 

SPD User 87.39 93.45 (85, 90) (91, 84) (88, 87) 

SPD Network 89.99 95.83 (87, 95) (96, 83) (91, 89) 

SPD Optimised 96.08 99.88 (97, 99) (99, 96) (98, 97) 

SPD all 93.20 98.22 (89, 98) (99, 86) (94, 93) 

MaxEnt Honeypot 72.93 73.02 (76, 70) (69, 78) (72, 74) 

SPD Account 60.82 60.82 (60, 61) (61, 61) (61, 61) 

SPD User 67.37 67.39 (77, 63) (49, 86) (60, 72) 

SPD Network 55.01 56.09 (64, 52) (32, 80) (43, 63) 

SPD Optimised 75.40 75.51 (79, 72) (70, 81) (74, 76) 

SPD all 75.40 75.51 (79, 72) (70, 81) (74, 76) 

MLP Honeypot 82.58 82.43 (84, 82) (81, 80) (81, 80) 

SPD Account 69.72 69.59 (70, 69) (73, 66) (71, 68) 

SPD User 80.22 80.25 (82, 78) (77, 83) (80, 81) 

SPD Network 62.42 62.29 (63, 62) (57, 68) (60, 65) 

SPD Optimised 82.94 82.95 (85, 81) (83, 83) (84, 82) 

SPD all 92.58 92.65 (89, 97) (97, 88) (93, 92) 

SVM Honeypot 73.81 73.79 (73, 74) (73, 74) (73, 74) 

SPD Account 66.01 66.79 (60, 76) (82, 51) (70, 61) 

SPD User 73.30 72.92 (80, 69) (60, 86) (68, 77) 

SPD Network 58.84 58.36 (62, 57) (77, 40) (49, 66) 

SPD Optimised 75.65 75.58 (79, 73) (69, 82) (77, 74) 

SPD all 80.47 80.46 (81, 80) (81, 80) (81, 80) 

SVM + MLP Features Honeypot 73.98 74.13 (76, 77) (77, 75) (73, 74) 

SPD Account 63.54 63.69 (61, 67) (67, 61) (63, 64) 

SPD User 71.32 70.96 (77, 68) (58, 84) (66, 75) 

SPD Network 59.46 59.04 (62, 58) (43, 75) (51, 66) 

SPD Optimised 76.64 76.58 (79, 75) (72, 81) (75, 78) 

SPD all 87.64 87.49 (85, 91) (92, 83) (89, 87) 

Table 10 

Evaluation results of Word2Vec features in comparison with our optimised set of features for all classifiers. The Word2Vec 

feature group contains features learnt by the Word2Vec model, and some handcrafted features lexical richness, activeness and 

interestingness . ‘(0, 1)’ denotes performance on the spam part and the legitimate part of the dataset, respectively. 

Classifier Features Accuracy AUC Precision Recall F-score 

% % % (0,1) % (0,1) % (0,1) 

Random Forest SPD Word2Vec 94.95 99.05 (95, 95) (95, 95) (95, 95) 

SPD Optimised 98.46 99.87 (99, 99) (99, 99) (99, 99) 

ExtraTrees SPD Word2Vec 95.47 99.34 (96, 95) (96, 95) (96, 95) 

SPD Optimised 98.63 99.89 (100, 97) (97, 100) (99, 98) 

Gradient Boosting SPD Word2Vec 95.04 99.09 (95, 95) (95 ,95) (95, 95) 

SPD Optimised 98.72 99.93 (99, 98) (98, 99) (98, 99) 

MaxEnt SPD Word2Vec 89.03 89.14 (92, 86) (87, 91) (89, 89) 

SPD Optimised 97.12 97.13 (98, 96) (97, 98) (97, 97) 

MLP SPD Word2Vec 94.40 94.43 (96, 93) (93, 96) (94, 94) 

SPD Optimised 98.42 98.43 (99, 98) (98, 99) (98, 98) 

SVM SPD Word2Vec 89.91 90.01 (93, 87) (87, 93) (90, 90) 

SPD Optimised 97.35 97.38 (98, 97) (97, 98) (97, 97) 

SVM + MLP Features SPD Word2Vec 92.08 92.24 (96, 88) (88, 96) (92, 92) 

SPD Optimised 97.71 97.74 (99, 97) (97, 98) (98, 98) 
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Table 11 

Sample tokens from misclassified tweets 

Fig. 11. Distribution of different users in the SPD manual dataset. Known bots are accounts that mention the word ‘bot’ explicitly as part of their name and share some basic 

features similarities with normal users such as the level of name similarity (NameSim) . Known bots in the dataset account for less than 10% of all users. 
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. Conclusion and future work 

This study offers an effective method for spam detection and

ew insights into the sophisticatedly evolving techniques for spam-

ing on Twitter. The proposed spam detection method utilised

n optimised set of readily available features. Being independent

f historical tweets which are often unavailable on Twitter makes

hem suitable for real-time spam detection. The efficacy and ro-

ustness of the proposed features set is shown by testing a number

f machine learning models and on dataset collected orthogonally

rom the study data. Performance is consistent across the differ-

nt models and there is significant improvement over the baseline.

t was also shown that automated spam accounts follow a well-

efined pattern with surges of intermittent activities. The proposed

pam tweet detection approach can be applied in any real-time fil-

ering application. For example, it is applicable to data collection

ipelines to filter out irrelevant content at an early pre-processing

tage to ensure the quality and representativeness of research data.

he combination of handcrafted features and features learnt in an

nsupervised manner using word embeddings is shown to signif-

cantly improve baseline performance and to perform comparably

o the best performing feature set using a smaller number of fea-

ures. 

During the analysis of the data, we observed that spam users

end to be selective in following other users thereby forming en-

laves of spammers. This is a high-level observation that we aim

o explore further in the future. Additionally, both the two broad

ser groups, i.e. human users and social bot (autonomous entity)
sers contain spammers, whose spamming behaviour tends to be

imilar. The distinction between legitimate human users vs. legiti-

ate social bots as well as human spammers vs. social bot spam-

ers needs to be investigated further. Another interesting dimen-

ion for future work is to study the effect of the recent increase

n the maximum length of tweets [25] on spamming activity. Intu-

tively, automated spam accounts will face difficulties in generating

engthier tweets intelligently, thereby making these tweets easier

o identif y. 
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