
Project Number 732223

D7.6 IDE Integration Services - Final Version

Version 1.0
22 December 2018

Final

Public Distribution

FrontEndART

Project Partners: Athens University of Economics & Business, Bitergia, Castalia Solutions,
Centrum Wiskunde & Informatica, Eclipse Foundation Europe, Edge Hill
University, FrontEndART, OW2, SOFTEAM, The Open Group, University of
L′Aquila, University of York, Unparallel Innovation

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
CROSSMINER Project Partners accept no liability for any error or omission in the same.

© 2018 Copyright in this document remains vested in the CROSSMINER Project Partners.

D7.6 IDE Integration Services - Final Version

Project Partner Contact Information

Athens University of Economics & Business Bitergia
Diomidis Spinellis José Manrique Lopez de la Fuente
Patision 76 Calle Navarra 5, 4D
104-34 Athens 28921 Alcorcón Madrid
Greece Spain
Tel: +30 210 820 3621 Tel: +34 6 999 279 58
E-mail: dds@aueb.gr E-mail: jsmanrique@bitergia.com
Castalia Solutions Centrum Wiskunde & Informatica
Boris Baldassari Jurgen J. Vinju
10 Rue de Penthièvre Science Park 123
75008 Paris 1098 XG Amsterdam
France Netherlands
Tel: +33 6 48 03 82 89 Tel: +31 20 592 4102
E-mail: boris.baldassari@castalia.solutions E-mail: jurgen.vinju@cwi.nl
Eclipse Foundation Europe Edge Hill University
Philippe Krief Yannis Korkontzelos
Annastrasse 46 St Helens Road
64673 Zwingenberg Ormskirk L39 4QP
Germany United Kingdom
Tel: +33 62 101 0681 Tel: +44 1695 654393
E-mail: philippe.krief@eclipse.org E-mail: yannis.korkontzelos@edgehill.ac.uk
FrontEndART OW2 Consortium
Rudolf Ferenc Cedric Thomas
Zászló u. 3 I./5 114 Boulevard Haussmann
H-6722 Szeged 75008 Paris
Hungary France
Tel: +36 62 319 372 Tel: +33 6 45 81 62 02
E-mail: ferenc@frontendart.com E-mail: cedric.thomas@ow2.org
SOFTEAM The Open Group
Alessandra Bagnato Scott Hansen
21 Avenue Victor Hugo Rond Point Schuman 6, 5th Floor
75016 Paris 1040 Brussels
France Belgium
Tel: +33 1 30 12 16 60 Tel: +32 2 675 1136
E-mail: alessandra.bagnato@softeam.fr E-mail: s.hansen@opengroup.org
University of L′Aquila University of York
Davide Di Ruscio Dimitris Kolovos
Piazza Vincenzo Rivera 1 Deramore Lane
67100 L′Aquila York YO10 5GH
Italy United Kingdom
Tel: +39 0862 433735 Tel: +44 1904 325167
E-mail: davide.diruscio@univaq.it E-mail: dimitris.kolovos@york.ac.uk
Unparallel Innovation
Bruno Almeida
Rua das Lendas Algarvias, Lote 123
8500-794 Portimão
Portugal
Tel: +351 282 485052
E-mail: bruno.almeida@unparallel.pt

Page ii Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.6 IDE Integration Services - Final Version

Table of Contents

1 Introduction 2

2 Technical documentation 3

2.1 Scenarios . 3

2.1.1 Pull-based Protocols . 3

2.1.2 Push-based Protocols . 4

3 Implementation 5

3.1 Relevant Participants of Integration . 6

3.2 Abstract Layers of Integration . 6

3.2.1 Common REST API Specification . 7

3.2.2 Common REST API Implementation . 7

3.2.3 Shared JSON Serialization Logic . 7

3.2.4 Shared Communication Data Model Implementation 7

3.3 Features of CROSSMINER Eclipse IDE Plug-in Currently Relying on the Integration Services 7

3.3.1 Library Search Feature . 7

3.3.2 Code recommendation feature . 8

3.3.3 API documentation and Q&A posts . 9

3.3.4 Integration Related Settings . 10

3.4 Technical details . 10

3.4.1 Using OpenAPI standard as a Common REST API Specification 11

3.4.2 Automatic Generation of REST API library for CROSSMINER Eclipse IDE Plug-in . 15

3.4.3 Description of the Generated API Client’s Functionality 15

3.4.4 Usage of the Generated API Client’s Functionality 19

3.5 Integration with the Continuous Integration System of CROSSMINER 19

3.5.1 Using Tycho to Build the CROSSMINER Eclipse IDE Plug-in 19

3.5.2 Framework for Automatic Update Site Deployment 20

4 Further Steps 21

5 Conclusion 22

5.1 Technical requirements . 22

5.2 Use case requirements . 22

5.3 Next development steps . 22

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page iii

D7.6 IDE Integration Services - Final Version

Document Control
Version Status Date

0.5 Initial version 29 November 2018
0.8 Draft ready for internal review 3 December 2018
0.9 First pass corrections 19 December 2018
1.0 Final version 22 December 2018

Page iv Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.6 IDE Integration Services - Final Version

Executive Summary

This document presents the deliverable D7.6 (IDE Integration Services - Final Version) of the
CROSSMINER project. The deliverable is the final implementation of the IDE Integration Services,
presented in task T7.3 of WP7 as part of the CROSSMINER Eclipse IDE Plug-in. IDE Integration
Services enables the connection between the Eclipse IDE and the Knowledge Base.

The deliverable covers 100% of the plug-in integration related technology and 100% of the plug-in
integration related use case requirements defined in deliverable D1.1 (Project Requirements). These
covered requirements include the use of a common API description file and framework, the handling
of JSON format, using the proper character encoding method, and connecting the CROSSMINER
server to query certain recommendations.

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 1

D7.6 IDE Integration Services - Final Version

1 Introduction

One of the main functionalities of the CROSSMINER Eclipse IDE Plug-in is to provide an interface
for the end users through which they can access the functionality of CROSSMINER Server. The
Integrated Development Environment itself acts as a client in this setting; most of the work is done
by the CROSSMINER server where the knowledge is stored and the “answers” are calculated.

Figure 1 shows how the CROSSMINER Eclipse IDE Plug-in is connected to the CROSSMINER plat-
form. It is connected to the Logic Layer (the CROSSMINER server) through the common CROSS-
MINER API. In the previous deliverable D7.5, we designed and planed the high level architecture of
the integration services. The main goal of this deliverable was to define low level technical details
based on these plans and describe implemented functionalities; by doing so, we enable the IDE to
connect directly to the CROSSMINER server through the CROSSMINER API.

Section 2 gives an overview of the used protocol designs. The implementation of the connectivity fea-
tures of the CROSSMINER Eclipse IDE Plug-in is described in Section 3. The planned further steps
towards other related features of the CROSSMINER Eclipse IDE Plug-in is described in Section 4,
and Section 5 links the current implementation status to the project requirements.

Figure 1: Location of the Integrated Development Environment in the CROSSMINER platform

Page 2 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.6 IDE Integration Services - Final Version

2 Technical documentation

As mentioned above, CROSSMINER Eclipse IDE Plug-in is basically a user interface that enables the
user to utilize the functionalities of the CROSSMINER knowledge base (although it implements other
functionalities too). In this setting the Integrated Development Environment acts as a client which is
connected to the CROSSMINER server. Most of the work is done by the server, that “answers” the
“questions” the user asks using the CROSSMINER Eclipse IDE Plug-in. This requires a well-defined
communication interface between the IDE and the CROSSMINER server, which must be used by the
CROSSMINER Eclipse IDE Plug-in.

2.1 Scenarios

The communication between the CROSSMINER server and the CROSSMINER Eclipse IDE Plug-
in could be classified by the main direction of the information flow. In both cases, it is the client
that initiates the communication. In the case of recommendation retrieval, the client sends a query
to the server which will send back the recommendations. For most of the features provided by
the CROSSMINER Eclipse IDE Plug-in, it initiates a request by sending context and environment
information to the CROSSMINER server. As a reply, the server sends back its recommendations
related to the given situation. In the case of the user activity monitoring, the client simply pushes
data to the server. For the first case, a pull-based communication protocol was designed, while,
in the second case, the CROSSMINER Eclipse IDE Plug-in uses a push-based approach. These
communication classes are illustrated in Figure 2.

Figure 2: Overview of the CROSSMINER Eclipse IDE Plug-in Integration Related Components

2.1.1 Pull-based Protocols

When the user uses a feature in order to retrieve some information or recommendation, the CROSS-
MINER Eclipse IDE Plug-in initiates a request in which it sends all the necessary information col-
lected on the client-side to the CROSSMINER server. For example, to check whether there are
updates available for a certain library in the currently edited project, the CROSSMINER Eclipse IDE
Plug-in collects the library related data and sends it to the CROSSMINER server. This is illustrated

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 3

D7.6 IDE Integration Services - Final Version

on the left side of Figure 2 by the arrow labeled by 1 that points from the CROSSMINER Eclipse
IDE Plug-in to the CROSSMINER server. The server performs the given task and sends back the
recommendation. This answer contains all the recommendation related data to enable the CROSS-
MINER Eclipse IDE Plug-in to successfully accomplish the requested feature. For example, the
CROSSMINER server provides a list of accessible updates for the given library. This is shown on
the left side of Figure 2 by the arrow labeled as 2, pointing from the CROSSMINER server to the
CROSSMINER Eclipse IDE Plug-in.

2.1.2 Push-based Protocols

When a feature of the CROSSMINER Eclipse IDE Plug-in, whose primary activity is to send some
data to the server, is activated, the plug-in simply sends the data to the CROSSMINER server, as
illustrated on the right side of Figure 2 by the arrow, which starts from the CROSSMINER Eclipse
IDE Plug-in and points to the CROSSMINER server. So, the client pushes the data to the server
without expecting any data in return. However, due to prevent possible information loss, the server
has to acknowledge that the current values of the metrics arrived. For example, to send the previously
collected user activity metrics, the CROSSMINER Eclipse IDE Plug-in uses the method described
above, for further details see D7.7: Developer Activity Monitoring (Final Version).

This solution is more feasible for this kind of client-to-server data transfer than a pull-based method.
In this setting, the CROSSMINER Eclipse IDE Plug-in collects data on the “client” side indepen-
dently from the CROSSMINER server, thus, the server has no information on whether the data is
ready or not. A pull-based method (when the communication is initiated from the server side) could
work only in a timed way. However, it would require the server to actively maintain a list of its
clients, and the success of the request would not be guaranteed as the CROSSMINER Eclipse IDE
Plug-in could actually not being executed at the client side when the request is initiated.

Page 4 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.6 IDE Integration Services - Final Version

3 Implementation

During the design of the CROSSMINER Eclipse IDE Plug-in, we identified several layers of inte-
gration among various CROSSMINER components. The most important components of the client
and server side regarding the communication are shown in Figure 3. The blue arrow represents the
information flow between the components.

As can be seen, there are several common modules used on both the server and client side of the
connection. One goal of the integration is to use the same, common implementation of these modules
in all components in which it is possible. To do this, we should be aware of the integration-related
CROSSMINER components. These components, their connections, and the status of the integration
at the different layers are described briefly in the following subsections.

Figure 3: Overview of the CROSSMINER Eclipse IDE Plug-in Integration Layers

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 5

D7.6 IDE Integration Services - Final Version

3.1 Relevant Participants of Integration

In Figure 4 the CROSSMINER components that are relevant to the integration of the CROSSMINER
Eclipse IDE Plug-in into the CROSSMINER platform are shown. In this document, we are concen-
trating on the CROSSMINER Eclipse IDE Plug-in.

The CROSSMINER Eclipse IDE Plug-in has two main functionalities: to help the developers query
and utilize the data stored in the knowledge base, and to collect user activity data and metrics. Both
functionalities require the plug-in to communicate with the CROSSMINER server.

The CROSSMINER server has two main components that are targeted by the requests of the plug-
in: the CROSSMINER Knowledge Base and the CROSSMINER Metric Provider. The Knowledge
Base is the component that provides recommendations for the CROSSMINER Eclipse IDE Plug-in.
A significant part of the communication targets this component. The Metric Provider is in charge
of processing (among others) the user activity data collected by the CROSSMINER Eclipse IDE
Plug-in. It will also provide aggregated metric values to the Web-based Dashboard.

As can be seen, the plug-in will use some functionalities of the Web-based Dashboard component.
Namely, the plug-in itself lacks the functionality to show metrics, instead, it refers to the Web-based
Dashboard when the user requires so. Thus, the plug-in should be able to assemble URLs that refer
to the proper page of the dashboard server.

Figure 4: CROSSMINER Integration Related Components

3.2 Abstract Layers of Integration

To ensure the seamless communication between the CROSSMINER server and the CROSSMINER
Eclipse IDE Plug-in, it is necessary to use a shared specification of the REST API along with a com-
mon serialization method for the shared data models when transmitting data from one component to
the other. In the following subsection, we will elaborate on the integration of these two components.

Page 6 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.6 IDE Integration Services - Final Version

3.2.1 Common REST API Specification

User requirement “U15: API uses a description file for the API specification” of the CROSSMINER
project requires the API to be defined in an API description file. To satisfy this requirement, the
CROSSMINER REST API is defined in a file using the OpenAPI1 specification, a common REST
API specification standard.

3.2.2 Common REST API Implementation

It is important that the server and the client use the same REST API, and the common REST API
specification file enables us to do so. We use this file on the CROSSMINER Eclipse IDE Plug-in side
as a basis of the implementation. It is also used on the server side. As it specifies all the available
API calls, both the client and the server side implementations use the same REST paths with the right
parameters, with the same character encoding, and proper headers and bodies for the queries.

3.2.3 Shared JSON Serialization Logic

The shared object serialization logic is essential for a proper communication between two compo-
nents. It is a crucial part of the communication layer, which ensures that the two participants can
understand each other. JSON is a well established and widely used data description language. Ob-
jects described in JSON can be easily converted to programming language objects in most of the
object-oriented programming languages, including Java. Thus, we decided to use the JSON object
serialization model to transform data into streams, transfer them through the REST API calls and
convert them back to objects on the other side.

3.2.4 Shared Communication Data Model Implementation

Another fundamental part of the communication layer is the set of shared Data Models. Distinct
components have to use the same objects to represent their states in order to ensure the success of
the serialization components. We use the same interface for the data models on both the server and
client side, as defined on the OpenAPI specification of the CROSSMINER API.

3.3 Features of CROSSMINER Eclipse IDE Plug-in Currently Relying on the
Integration Services

3.3.1 Library Search Feature

The CROSSMINER Eclipse IDE Plug-in provides an interface, where the user can easily search for
various projects or libraries that can be used in their project. To initiate a query like that, a short
description of a wanted feature or at least a part of the name of the needed project must be given.
The returned results will include the projects that have been already analyzed by the CROSSMINER

1https://www.openapis.org/

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 7

https://www.openapis.org/

D7.6 IDE Integration Services - Final Version

server and match the given criteria. The user can easily navigate among their searches, by switching
between the search tabs, where each of them refers to a particular search or by requesting another
list of projects which are similar to a previously selected result, where the method of similarity is
determined by the user.

The CROSSMINER server is able to suggest some additional libraries to be used in our project
beyond the currently used ones. For this query, the CROSSMINER Eclipse IDE Plug-in gathers the
necessary information from our project definition files, like the pom.xml file, which consists of
definitions of libraries that our project is dependent on among other MAVEN related data. After that,
CROSSMINER Eclipse IDE Plug-in sends a particular set of the collected libraries, selected by the
user to which the search should base on. The CROSSMINER server responds with another set of
libraries that could be used beside the present ones. The user has the ability to easily install these
libraries to their project via the provided interface.

All of the received results are processed, so they can be used by the CROSSMINER Eclipse IDE
Plug-in in a meaningful way. For example, they can be listed on the graphical user interface in a way,
that the user can learn some specific information about the given projects or libraries.

The mentioned interface after a search can be seen on the Figure 5.

Figure 5: Results of Library Search in CROSSMINER Eclipse IDE Plug-in

3.3.2 Code recommendation feature

The CROSSMINER server is able to provide some source code related recommendations. One of
these is the Code Recommendation which is used to provide the user with a pattern of the usage of
the given code elements and API calls. To initiate a query for this, the CROSSMINER Eclipse IDE
Plug-in sends the server a code snippet, that can be provided by the user via a selection in the Java

Page 8 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.6 IDE Integration Services - Final Version

Source Code Editor Eclipse View and the server will use the given snippet as a base definition for
our query. As a result the CROSSMINER Eclipse IDE Plug-in receives a collection of suggested
patterns which can be directly inserted into the source code, however, this is not intended. The user
should have an understanding of the given patterns and should use them only as a reference for an
implementation. Currently, there is no guarantee for the semantic correctness of these patterns.

An example of the Code Recommendation interface with results can be seen on the Figure 6.

Figure 6: Results of Code Recommendation in CROSSMINER Eclipse IDE Plug-in

3.3.3 API documentation and Q&A posts

The CROSSMINER Eclipse IDE Plug-in can help the user to get a better understanding of a function
or API call by showing related Q&A posts or documentation about the given call. The CROSS-
MINER server receives an arbitrary source code chunk and responds with a set of recommended
website URLs. Then, these results are displayed on the dedicated API Documentation and Q&A
Posts view, where the users can browse them or request to open them in their default browser.

This interface can be seen on the Figure 7.

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 9

D7.6 IDE Integration Services - Final Version

Figure 7: Results of a request for Q&A Posts and API Documentation in CROSSMINER Eclipse
IDE Plug-in

3.3.4 Integration Related Settings

The CROSSMINER Eclipse IDE Plug-in supports the integration and the communication of the
CROSSMINER server and the client by providing a settings interface for the user to give her the
ability to customize the properties of the connection. This interface can be reached by opening the
regular Eclipse Preferences page from the Eclipse IDE Window menu and going into the CROSS-
MINER category’s Remote Settings preference page. This settings interface can be seen on the
Figure 8.

The user can change the address and port of the CROSSMINER server where the request is going to
be sent to and the address of the Web-based Dashboard, which will be used by the Library Search
feature to open the related page of a project. The CROSSMINER Eclipse IDE Plug-in does not
require to be restarted after setting a new value for these properties, simply apply the changes and the
next query will be sent using the newly set properties.

3.4 Technical details

As it is shown on Figure 9, we use the shared OpenAPI specification as a bridge between the server
and the client side. At the current stage, the OpenAPI specification is provided and maintained by
the CROSSMINER server.

We use the Swagger Codegen (it will be described in Section 3.4.2), which can generate an imple-
mentation of the REST API handling client methods based on the description in the OpenAPI spec-
ification. This generated client can be used in the CROSSMINER Eclipse IDE Plug-in to provide a
single façade over the communication between the components.

Page 10 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.6 IDE Integration Services - Final Version

Figure 8: Remote Settings preferences page in CROSSMINER Eclipse IDE Plug-in

3.4.1 Using OpenAPI standard as a Common REST API Specification

OpenAPI is a standard in the industry for API documentation and specification. It is widely used by
different companies all around the world. In the past few years, it has become one of the best ways
to describe an API.

One of its main features is that one can create a very detailed description of an API call (including its
parameters and return value). Type constraints, the method of requests, or the data structures received
or sent all could be defined.

We use this standard as a common descriptor to specify the CROSSMINER server’s behavior and to
implement our client. The current CROSSMINER REST API specification file contains a detailed
description of the available CROSSMINER server API calls and transferred objects. Listing 1 shows
an example, namely the Artifact Search API call path.
. . .
" / a p i / a r t i f a c t s / s e a r c h / { a r t i f a c t _ q u e r y } " : {

" g e t " : {
" p r o d u c e s " : [" a p p l i c a t i o n / j s o n "] ,
" p a r a m e t e r s " : [

{
" name " : " a r t i f a c t _ q u e r y " ,
" i n " : " p a t h " ,

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 11

D7.6 IDE Integration Services - Final Version

Figure 9: Current State of CROSSMINER Eclipse IDE Plug-in Integration Related Components

" d e s c r i p t i o n " : " a r t i f a c t _ q u e r y " ,
" r e q u i r e d " : true ,
" t y p e " : " s t r i n g "

} ,
. . .

] ,
" r e s p o n s e s " : {

" 200 " : {
" d e s c r i p t i o n " : "OK" ,
" schema " : {

" t y p e " : " a r r a y " ,
" i t e m s " : {

" $ r e f " : " # / d e f i n i t i o n s / A r t i f a c t "
}

}
} ,
. . .

}
. . .

}
}
. . .

Listing 1: Example snippet from the CROSSMINER server’s OpenAPI specification

Page 12 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.6 IDE Integration Services - Final Version

The defined API calls could be grouped into the following major categories according to their func-
tionality. These calls use several custom-made data structures during the communication, which are
also defined using OpenAPI standard and could be grouped.

3.4.1.1 Multiply Entries Retrieving Calls There are a lot of requests which respond with a set
or collection of elements not just with a single entity. This behavior is well described in the OpenAPI
specification, and an example for this can be seen at the Listing 2.
. . .
" r e s p o n s e s " : {

" 200 " : {
" d e s c r i p t i o n " : "OK" ,
" schema " : {

" t y p e " : " a r r a y " ,
" i t e m s " : {

" $ r e f " : " # / d e f i n i t i o n s / A r t i f a c t "
}

}
} ,
. . .

}
. . .

Listing 2: Example for multiple entries result value snippet from the CROSSMINER server’s Ope-
nAPI specification

With this definition, we can ensure that the client and the server will understand each other when
a collection is sent over the communication channels. It is essential to prepare both sides for this
scenario.

3.4.1.2 Single Entry Retrieving Calls The other major group of calls is the ones that respond
with a single entry. These are for example the recommendation queries. They respond with a single
Recommendation element which is described at the definition of the API call. An example of this
can be seen in Listing 3.
. . .
" 200 " : {

" d e s c r i p t i o n " : "OK" ,
" schema " : {

" $ r e f " : " # / d e f i n i t i o n s / Recommendation "
}

} ,
. . .

Listing 3: Example for Recommendation element result value snippet from the CROSSMINER
server’s OpenAPI specification

3.4.1.3 Data Models The definition of the previously mentioned calls heavily relies on the defi-
nition of model elements. The definition of these models is also included in the CROSSMINER API

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 13

D7.6 IDE Integration Services - Final Version

specification since both the client and the server have to know what kind of data is about to be trans-
ferred. The OpenAPI standard provides a precise way to describe these models. An example of these
can be seen at the Listing 4.

. . .
" Recommendation " : {

" t y p e " : " o b j e c t " ,
" p r o p e r t i e s " : {

" r ecommenda t ion I t ems " : {
" t y p e " : " a r r a y " ,

" i t e m s " : {
" $ r e f " : " # / d e f i n i t i o n s / Recommendat ionItem "

}
}

} ,
" t i t l e " : " Recommendation "

} ,
" Recommendat ionItem " : {

" t y p e " : " o b j e c t " ,
" p r o p e r t i e s " : {

" ap iCa l lRecommenda t ion " : {
" $ r e f " : " # / d e f i n i t i o n s / A p i C a l l R e s u l t "

} ,
" a p i D o c u m e n t a t i o n L i n k " : {

" t y p e " : " s t r i n g "
} ,
" a r t i f a c t " : {

" $ r e f " : " # / d e f i n i t i o n s / A r t i f a c t "
} ,
" recommendat ionType " : {

" t y p e " : " s t r i n g "
} ,
" recommendedLibrary " : {

" $ r e f " : " # / d e f i n i t i o n s / RecommendedLibrary "
} ,
" r e l a t e d T o " : {

" t y p e " : " o b j e c t "
} ,
" s i g n i f i c a n c e " : {

" t y p e " : " number " ,
" f o r m a t " : " dou b l e "

}
} ,
" t i t l e " : " Recommendat ionItem "

} ,
. . .

Listing 4: Example for Recommendation element model definition snippet from the CROSSMINER
server’s OpenAPI specification

These defined models then can be used several times, since they can be referenced by other model
elements even in a hierarchical way.

Page 14 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.6 IDE Integration Services - Final Version

3.4.2 Automatic Generation of REST API library for CROSSMINER Eclipse IDE Plug-in

Swagger Codegen2 is an open source solution for Java REST API client generation from OpenAPI
specification. It is able to create an implementation of the client side of the communication from the
API specification given in a JSON file according to the OpenAPI format.

In our case, Swagger Codegen generates a Java method for each API call, which can then be easily
invoked. It also generates an implementation for every object defined by the specification; these can
then be used in the communication either as input parameters or return values. These objects can be
hierarchically nested into each other, which enables the definition of complex data structures. The
ability to generate shared data models from the specification allows us to use the same objects on
both sides of the communication.

A code snippet that uses the ArtifactsRestControllerApi.getProjectUsingGET CROSSMINER API
method is shown in Listing 5. The implementation of the method was automatically generated by the
Swagger Codegen, as well as the implementation of the return type io.swagger.client.model.Artifact
which represents a project, that has been already analyzed by the CROSSMINER server.

A detailed description of the Swagger Codegen can be found on its website: https://github.
com/swagger-api/swagger-codegen.

S t r i n g q u e r y S t r i n g = i n p u t F i e l d . g e t T e x t () ;

A r t i f a c t s R e s t C o n t r o l l e r A p i a r t i f a c t s R e s t C o n t r o l l e r A p i =
new A r t i f a c t s R e s t C o n t r o l l e r A p i () ;

L i s t < A r t i f a c t > a r t i f a c t L i s t = a r t i f a c t s R e s t C o n t r o l l e r A p i
. g e t P r o j e c t U s i n g G E T (q u e r y S t r i n g , nul l , nul l , n u l l) ;

re turn a r t i f a c t L i s t ;

Listing 5: The use of a Swagger Codegen-generated CROSSMINER API method

3.4.3 Description of the Generated API Client’s Functionality

Inside the generated client, the earlier mentioned ArtifactsRestControllerApi.getProjectUsingGET
CROSSMINER API method is built upon the ArtifactsRestControllerApi.getProjectUsingGETCall
method, which constructs the desired API call to be initiated later. This method takes care of the
passed parameters to be included in the query in a proper way and attaches a progress listener to the
call to be notified when a response arrives from the CROSSMINER server.

A simplified version of this is illustrated in the 6 listing.

p u b l i c C a l l g e t P r o j e c t U s i n g G E T C a l l (S t r i n g a r t i f a c t Q u e r y ,
O b j e c t page , . . . , P r o g r e s s L i s t e n e r p r o g r e s s L i s t e n e r) {

O b j e c t l o c a l V a r P o s t B o d y = n u l l ;

. . .

2https://swagger.io/tools/swagger-codegen/

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 15

https://github.com/swagger-api/swagger-codegen
https://github.com/swagger-api/swagger-codegen
https://swagger.io/tools/swagger-codegen/

D7.6 IDE Integration Services - Final Version

S t r i n g l o c a l V a r P a t h = " / a p i / a r t i f a c t s / s e a r c h / { a r t i f a c t _ q u e r y } "
. r e p l a c e A l l (" \ \ { " + " a r t i f a c t _ q u e r y " + " \ \ } " ,
a p i C l i e n t . e s c a p e S t r i n g (a r t i f a c t Q u e r y . t o S t r i n g ())) ;

. . .

i f (page != n u l l)
l oc a l Va r Qu e r yP a ra m s . ad dA l l (

a p i C l i e n t . p a r a m e t e r T o P a i r (" page " , page)) ;

. . .

f i n a l S t r i n g [] l o c a l V a r A c c e p t s = {
" a p p l i c a t i o n / j s o n "

} ;

. . .

f i n a l S t r i n g [] l o c a l V a r C o n t e n t T y p e s = {

} ;

. . .

i f (p r o g r e s s L i s t e n e r != n u l l) {
a p i C l i e n t . g e t H t t p C l i e n t () . n e t w o r k I n t e r c e p t o r s ()

. add (new I n t e r c e p t o r () {
@Override
p u b l i c Response i n t e r c e p t (Chain c h a i n) {

. . .

}
}) ;

}

. . .

re turn a p i C l i e n t
. b u i l d C a l l (l o c a l V a r P a t h , "GET" , loca lVarQueryParams , . . .) ;

}

Listing 6: Building a call to retrieve a project list from the Server

Other methods like the RecommenderRestControllerApi.getApiCallRecommendationUsingPOST
CROSSMINER API method also have a call builder under the hood. This request is going to transfer
its parameters to the CROSSMINER server by POST method, which requires them to be encapsu-
lated in the body of the request, instead of just being passed in the path of it. The RecommenderRest-
ControllerApi.getApiCallRecommendationUsingPOSTCall method provides this functionality while
having a lot of similarities with the previously discussed method.

Page 16 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.6 IDE Integration Services - Final Version

A simplified version of this is illustrated in Listing 7.
p u b l i c C a l l ge tApiCal lRecommendat ionUsingPOSTCal l (Query query ,

P r o g r e s s L i s t e n e r p r o g r e s s L i s t e n e r , . . .) {

O b j e c t l o c a l V a r P o s t B o d y = query ;

S t r i n g l o c a l V a r P a t h =
" / a p i / recommendat ion / recommended_API_cal l " ;

. . .

f i n a l S t r i n g [] l o c a l V a r A c c e p t s = {
" a p p l i c a t i o n / j s o n "

} ;

. . .

f i n a l S t r i n g [] l o c a l V a r C o n t e n t T y p e s = {
" a p p l i c a t i o n / j s o n "

} ;

. . .

i f (p r o g r e s s L i s t e n e r != n u l l) {
a p i C l i e n t . g e t H t t p C l i e n t () . n e t w o r k I n t e r c e p t o r s ()

. add (new I n t e r c e p t o r () {
@Override
p u b l i c Response i n t e r c e p t (Chain c h a i n) {

. . .

}
}) ;

}

. . .

re turn a p i C l i e n t . b u i l d C a l l (l o c a l V a r P a t h , "POST" , . . .) ;
}

Listing 7: Building a call to retrieve a code recommendation from the Server

These kinds of methods usually rely on some specialized compound data structures to encapsulate
their results. For example consider the sample in Listing 8, which is used to wrap up multiple
RecommendationItems while being transferred over the network.
p u b l i c c l a s s Recommendation {

@Seria l izedName (" recommenda t ion I t ems ")
p r i v a t e L i s t <RecommendationItem > recommenda t ion I t ems = n u l l ;

. . .

p u b l i c L i s t <RecommendationItem > ge tRecommenda t ionI tems () {

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 17

D7.6 IDE Integration Services - Final Version

re turn r ecommenda t ion I t ems ;
}

p u b l i c vo id se tRecommenda t ion I t ems (L i s t <RecommendationItem >
recommenda t ion I t ems) {
t h i s . r e commenda t ion I t ems = recommenda t ion I t ems ;

}

. . .

@Override
p u b l i c S t r i n g t o S t r i n g () {

. . .
}

}

Listing 8: Recommendation Datatype used during Communication

There are some other data structures that are used as parameters for these methods. These are also
specified by the CROSSMINER API and generated on the client side by the Swagger Codegen.
Consider the code snippet in Listing 9, which shows a simplified version of the implementation of
the Query parameter data structure. It is usually used to describe the current state of the project the
user is working on, and sent to the CROSSMINER server, so it can rely on while suggesting some
recommendations.

p u b l i c c l a s s Query {

@Seria l izedName (" a n n o t a t i o n s ")
p r i v a t e L i s t < S t r i n g > a n n o t a t i o n s = n u l l ;

@Ser ia l izedName (" c l a s s D e p e n d e n c i e s ")
p r i v a t e L i s t <Dependency > c l a s s D e p e n d e n c i e s = n u l l ;

. . .

p u b l i c L i s t < S t r i n g > g e t A n n o t a t i o n s () {
re turn a n n o t a t i o n s ;

}

p u b l i c vo id s e t A n n o t a t i o n s (L i s t < S t r i n g > a n n o t a t i o n s) {
t h i s . a n n o t a t i o n s = a n n o t a t i o n s ;

}

. . .

p u b l i c L i s t <Dependency > g e t C l a s s D e p e n d e n c i e s () {
re turn c l a s s D e p e n d e n c i e s ;

}

p u b l i c vo id s e t C l a s s D e p e n d e n c i e s (L i s t <Dependency >
c l a s s D e p e n d e n c i e s) {
t h i s . c l a s s D e p e n d e n c i e s = c l a s s D e p e n d e n c i e s ;

}

Page 18 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.6 IDE Integration Services - Final Version

. . .

@Override
p u b l i c S t r i n g t o S t r i n g () {

. . .
}

}

Listing 9: Query Datatype used during Communication

3.4.4 Usage of the Generated API Client’s Functionality

For concrete usage of the functionalities elaborated in the previous section consider Listing 5 and
Listing 10. In the latter we use the Query parameter data structure mentioned in Listing 9 to encap-
sulate the selected source code sample. After the request, the received answer is processed, so the
recommended API calls are collected into a list and passed back to the CROSSMINER Eclipse IDE
Plug-in. This functionality is used for the Code Recommendation feature described in Section 3.3.2.

S t r i n g cur ren tMethodCode = a c t i v e J a v a E d i t o r . g e t S e l e c t e d T e x t () ;

Recommende rRes tCon t ro l l e rAp i r e c o m m e n d e r R e s t C o n t r o l l e r =
new Recommende rRes tCon t ro l l e rAp i () ;

Query que ry = new Query () ;
que ry . s e tCur r en tMe thodCode (cur ren tMethodCode) ;

Recommendation recommendat ion = r e c o m m e n d e r R e s t C o n t r o l l e r
. getApiCal lRecommendat ionUsingPOST (query) ;

L i s t < A p i C a l l R e s u l t > r e s u l t s =
recommendat ion . ge tRecommenda t ionI tems ()
. s t r e a m () . map (i −> i . ge tApiCa l lRecommenda t ion ())
. c o l l e c t (C o l l e c t o r s . t o L i s t ()) ;

re turn r e s u l t s ;

Listing 10: The use of getApiCallRecommendationUsingPOST(), a Swagger Codegen-generated
CROSSMINER API method

3.5 Integration with the Continuous Integration System of CROSSMINER

3.5.1 Using Tycho to Build the CROSSMINER Eclipse IDE Plug-in

We have adapted the project of CROSSMINER Eclipse IDE Plug-in to be compatible with the Ty-
cho Build System. Tycho is a Maven plug-in for building Eclipse Plug-ins. Currently, this system
provides the functionality to build the update sites of the CROSSMINER Eclipse IDE Plug-in, which
can be used to easily install it into an Eclipse IDE.

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 19

D7.6 IDE Integration Services - Final Version

Because of the well-defined building process of Maven, we were able to inject the inclusion of de-
pendencies used by the CROSSMINER Eclipse IDE Plug-in into the building process. To achieve
this, there is a org.eclipse.scava.plugin.dependencies project, which is responsible to gather all the
required Maven dependencies used by the plug-in. Then, during the building process, this project is
assembled into a single JAR file and included into the project folder of CROSSMINER Eclipse IDE
Plug-in. This way we can choose third-party libraries for the project from a wider range.

Another significant benefit of this system is that it provides the ability to effortlessly include the
whole building process into an Automatic Integration service. Because Maven forms the basis of this
system, any automatic building service which is compatible with it can be used over our system.

3.5.2 Framework for Automatic Update Site Deployment

To help the process of building Update sites for CROSSMINER Eclipse IDE Plug-in, we have devel-
oped several scripts and modules that can automate the repetitive phases of the deployment.

3.5.2.1 OpenAPI specification updater This module can help the development by fetching the
newest OpenAPI specification of the CROSSMINER API directly from the CROSSMINER server
and saving it into a file in the building system for a later use.

3.5.2.2 Client builder This script is responsible for generating a REST client with the formerly
discussed Swagger Codegen generator and compiling it with the Maven build system. It relies on
the OpenAPI specification produced by the previously described module in Paragraph 3.5.2.1. As a
result of running this script, the generated client will be installed into our local Maven repository.

3.5.2.3 Dependency builder The building of org.eclipse.scava.plugin.dependencies project de-
scribed in Section 3.5.1 is done by this module. Its only goal is to build the dependency-project and
inject it into the CROSSMINER Eclipse IDE Plug-in’s project folder to solve the dependencies.

3.5.2.4 Update site builder The purpose of this script is to launch the whole Update Site building
process, which, as a result, will produce a completely standalone package of the CROSSMINER
Eclipse IDE Plug-in that can be shared even over the network and provides the ability for the users
to easily install it into her Eclipse IDE and to start using it right away.

Page 20 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.6 IDE Integration Services - Final Version

4 Further Steps

As noted earlier, CROSSMINER Eclipse IDE Plug-in represents one of the front-ends of CROSS-
MINER, thus almost all features are related to integration to some degree. It does not mean that all
of these features are implemented at this stage, but the integration service layer is ready to be used
during further development.

In the future, our main task will be to support all the provided functionality of the CROSSMINER
server in the CROSSMINER Eclipse IDE Plug-in. This may need further conciliation related to the
API calls to make sure the server can support every expected functionality.

For example, we also plan to implement some additional functionality, like error handling in the client
side, to make it more flexible against different operational conditions. Functionality that enables the
client to provide feedback on the received recommendations will also be implemented. We also
would like to further polish the UI for the CROSSMINER Eclipse IDE Plug-in.

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 21

D7.6 IDE Integration Services - Final Version

5 Conclusion

In this deliverable, an interim version of the IDE plug-in was prepared that uses the final version of
the integration services, i.e. communicates with the server through a well defined final interface.

In the following subsections we show how the technical (Section 5.1) and use case (Section 5.2)
requirements related to the CROSSMINER Eclipse IDE Plug-in Integration Services and defined in
the Project Requirements document (deliverable D1.1) are covered by the interim version of the plug-
in. In the last column of the tables an empty circle (#) denotes that the requirement is minimally (or
not) covered, a half-filled circle (G#) denotes that it is only partially covered, and a filled circle ()
denotes that it is mostly (or fully) covered.

5.1 Technical requirements

D74 The IDE shall provide a settings interface to the user, where the dif-
ferent properties of the CROSSMINER IDE plugin (like server ad-
dress and port, global settings for recommendation queries, etc.) can
be checked and changed. So the user can configure the plugin.

SHALL

D98 The IDE shall be able to send developer activity data (as controlled by
the user settings) to the CROSSMINER server.

SHALL

D138 The CROSSMINER REST API shall use UTF-8 encoding for all kind
of data sent or received in text mode.

SHALL

5.2 Use case requirements

U12 Able to obtain the API results in JSON format SHALL
U13 Able to use the API over REST SHALL
U15 API uses a description file for the API specification SHALL
U18 API is utilized by all UIs (dashboard, IDE plugin) SHALL

5.3 Next development steps

We will continue with the implementation of the more general features loosely related to integration
services, which are not fully implemented in this deliverable version.

Page 22 Version 1.0
Confidentiality: Public Distribution

22 December 2018

	Introduction
	Technical documentation
	Scenarios
	Pull-based Protocols
	Push-based Protocols

	Implementation
	Relevant Participants of Integration
	Abstract Layers of Integration
	Common REST API Specification
	Common REST API Implementation
	Shared JSON Serialization Logic
	Shared Communication Data Model Implementation

	Features of CROSSMINER Eclipse IDE Plug-in Currently Relying on the Integration Services
	Library Search Feature
	Code recommendation feature
	API documentation and Q&A posts
	Integration Related Settings

	Technical details
	Using OpenAPI standard as a Common REST API Specification
	Automatic Generation of REST API library for CROSSMINER Eclipse IDE Plug-in
	Description of the Generated API Client's Functionality
	Usage of the Generated API Client's Functionality

	Integration with the Continuous Integration System of CROSSMINER
	Using Tycho to Build the CROSSMINER Eclipse IDE Plug-in
	Framework for Automatic Update Site Deployment

	Further Steps
	Conclusion
	Technical requirements
	Use case requirements
	Next development steps

