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Executive Summary

This document reports on the results obtained for Task 2.1 and Task 2.2:

Task 2.1: Inference of project build configuration This task will analyse source code project build config-
urations for (at least) Maven and Eclipse based projects to extract precisely which other projects or
libraries a project depends on. Where possible dependency analysis will be extended with findings de-
rived from operating system-level package managers. Next to analysing project meta-data, this task also
entails extracting definitions from previously deployed open-source projects and their meta-data on the
Maven grand central and the most recent P2 repository by Eclipse;

Task 2.2: Modelling framework semantics This task will use the acquired meta-data on project dependency
in combination with in-depth analysis of the source code of open-source projects to produce actionable
information about factual dependencies. The produced information will be more accurate (avoiding both
junk and confusion) than manual documentation. The resulting analyses should be amenable to bespoke
extensions.

In this deliverable, we present a set of methods and tools for extracting actionable knowledge from meta-data
specification of dependencies in the OSGi1 and Apache Maven2 frameworks. As Maven has already been
the subject of extensive research, we put a particular emphasis on the OSGi framework and its use in the P2
repositories of Eclipse. P2 is a provisioning platform where software solutions based on Eclipse and Equinox
(Eclipse implementation of OSGi) are managed. Besides, OSGi is heavily used in the Eclipse use case presented
in “Use Case 6: Knowledge Extraction from Eclipse Forge Projects” (cf. D1.1 – Project Requirements). To
better understand how dependencies are currently managed by developers, and how CROSSMINER should help
in this regard, we conduct an empirical study of the use of OSGi in Eclipse.

We first conduct a systematic literature review that reveals a set of best practices commonly advocated by
experts and practitioners of the OSGi framework. We use these best practices to drive the definition of bespoke
recommendations in the project. Then, we present an analysis tool written in Rascal that extracts a set of metrics
from OSGi bundles in order to check whether these best practices are followed in practice. Using a large corpus
of OSGi bundles (the set of core plug-ins of Eclipse 4.6 Neon), we show whether developers follow these best
practices and discuss their impact on OSGi-based systems.

The goal of this deliverable is to lay an empirical foundation to build further upon when producing actual
feedback and suggestion components for the CROSSMINER platform. It reports on the necessary steps towards
accurate analysis of dependencies within the CROSSMINER project and IDE, and meaningful recommendations
for the developer in the IDE.

As the semantics of Apache Maven and OSGi largely differ on many aspects as it can be inferred from the
official documentation, we do not attempt to define a unified analysis framework or a set of common metrics for
both of these.

Part of the material presented here has been published and presented at the 15th International Conference on
Mining Software Repositories (MSR’18) [26]. The supporting paper can be accessed freely at the following
location: https://hal.archives-ouvertes.fr/hal-01740131/document.

We refer the reader to the companion deliverable D2.4 – Dependency Inference Components for a description
of the concrete software artefacts we developed to support Task 2.1 and Task 2.2 and the way they are integrated
within the overall CROSSMINER platform.

1https://www.osgi.org/
2https://maven.apache.org/
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This final report includes the following content:

• In Part I, we give some background on the OSGi framework and conduct a systematic review to extract a
set of best practices commonly advocated by OSGi experts and practitioners. Then, we specify, apply,
and evaluate an analysis tool on a large corpus of projects originating from the Eclipse Europe Foundation
use case partner to discover whether (i) these best practices are being followed by Eclipse developers and
(ii) what is their impact on OSGi-based systems;

• In Part II, we present some background on the Apache Maven framework and present a methodology for
extracting actionable knowledge from an analysis of Maven projects meta-data regarding dependencies
management;

• In Part III, we relate the work presented here to other work packages of the CROSSMINER project and
review the requirements originating from use case partners that we address.
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Part I

An Empirical Evaluation of OSGi
Dependencies Best Practices

1 Introduction

The time-honoured principle of separation of concerns entails splitting the development of complex systems
into multiple components interacting through well-defined interfaces. This way, the development of a system
can be broken down into multiple, smaller parts that can be implemented and tested independently. This
also fosters reuse by allowing software components to be reused from one system to the other, or even to be
substituted by one another provided that they satisfy the appropriate interface expected by a client. Three
crucial aspects [29] of successful separation of concerns are module interfaces, module dependencies, and
information hiding—a module’s interface hides any number of different functionalities, possibly depending on
other modules transitively.

Historically, the Java programming language did not offer any built-in support for the definition of versioned
modules with explicit dependency management [36]. This led to the emergence of OSGi, a module system and
service framework for Java standardized by the OSGi Alliance organization [37]. Initially, one of the primary
goals of OSGi was to fill the lack of proper support for modular development in the Java ecosystem (popularly
known as the “JAR hell”) OSGi rapidly gained popularity and, as of today, numerous popular software of
the Java ecosystem, including IDEs (e.g., Eclipse, IntelliJ), application servers (e.g., JBoss, GlassFish), and
application frameworks (e.g., Spring) rely internally on the modularity capabilities provided by OSGi.

Just like any other technology, it may be hard for newcomers to grasp the complexity of OSGi. The OSGi
specification describes several distinct mechanisms to declare dependencies, each with different resolution
and wiring policies (i.e., how to match bundle requirements against bundle capabilities when dependencies are
specified). Should dependencies be declared at the package level or the component level? Can the content of a
package be split amongst several components or should it be localized in a single one? These are questions
that naturally arise when attempting to modularize Java applications with OSGi. There is little tool support
to help writing the meta-data files that wire the components together, and so modularity design decisions are
mostly made by the developers themselves. The quality of this meta-data influences the modularity aspects of
OSGi systems. The reason is that OSGi’s configurable semantics directly influences all the aforementioned key
aspects of modularity: the definition of module interfaces, what a dependency means (wiring), and information
hiding (e.g., transitive dependencies).

A conventional approach to try and avoid such issues is the application of so-called “best practices” advised
by experts in the field. To the best of our knowledge, the assumptions underlying this advice have not been
investigated before: are they indeed relevant and do they have a positive effect on OSGi-based systems? Our
research questions are:

Q1 What OSGi best practices are advised?

Q2 Are OSGi best practices being followed?

Q3 Does each OSGi best practice have an observable effect on the relevant qualitative properties of an OSGi
bundle?
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To begin answering these questions, this first part of the deliverable makes the following contributions:

• A systematic review of best practices for dependency management in OSGi emerging from either the
OSGi Alliance itself or OSGi-endorsed partners; we identify 11 best practices and detail the rationale
behind them (Q1);

• An analysis of the bytecode and meta-data of a representative corpus of OSGi bundles (1,124 core plug-
ins of the Eclipse IDE) to determine whether best practices are being followed (Q2), and what is their
impact (Q3); this corpus emerges from the Eclipse Europe Foundation use case in the CROSSMINER
project.

Our results show that:

• Best practices are not widely followed in practice. For instance, half of the bundles we analyse specify
dependencies at the bundle level rather than at the package level—despite the fact that best practices
encourage to declare dependencies at the package level;

• The lack of consideration for best practices does not significantly impact the performance of OSGi-based
systems. Strictly following the suggested best practices reduces classpath size of individual bundles by
up to 23% and results in up to ±13% impact on performance at bundle resolution time.

The remaining of this part is structured as follows:

• In Section 2, we introduce background notions on the OSGi framework itself;

• In Section 3, we detail the methodology of the systematic literature review from which we extract a set of
best practices related to dependencies management;

• In Section 4, we present a set of metrics that provide factual information related to the use of these best
practices;

• In Section 5, we present our analysis tool for OSGi implemented in Rascal;

• In Section 6, we evaluate whether best practices are followed and what is their impact on a representative
corpus of OSGi bundles extracted from the Eclipse IDE;

• In Section 7, we give some concluding remarks on our analysis of OSGi.

Page 2 Version 1.0
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2 Background: the OSGi Framework

OSGi is a module system and service framework for the Java programming language standardized by the OSGi
Alliance organization [37], which aims at filling the lack of support for modular development with explicit
dependencies in the Java ecosystem (aka. the “JAR hell”). Some of the ideas that emerged in OSGi were later
incorporated in the Java standard itself, e.g., as part of the module system released with Java 9. In OSGi, the
primary unit of modularization is a bundle. A bundle is a cohesive set of Java packages and classes (and possibly
other arbitrary resources) that together provide some meaningful functionality to other bundles. A bundle is
typically deployed in the form of a Java archive file (JAR) that embeds a Manifest file describing its content, its
meta-data (e.g., version, platform requirements, execution environment), and its dependencies towards other
bundles. The OSGi framework itself is responsible for managing the life cycle of bundles (e.g., installation,
startup, pausing), possibly remotely. As of today, several certified implementations of the OSGi specification
have been defined, including Eclipse Equinox3 and Apache Felix4 to name but a few.

OSGi is a mature framework that comprises many aspects ranging from module definition and service discovery
to life cycle and security management [37]. In this document, we focus specifically on its support for depen-
dencies management. We describe in Section 2.1 the purpose and syntax of Manifest files, and then detail in
Section 2.2 how bundles declare their dependencies and how they are wired by the framework.

2.1 The Manifest File

Every bundle contains a meta-data file located in META-INF/MANIFEST.MF. This file contains a list of standard-
ized key-value pairs (known as headers) that are interpreted by the framework to ensure all requirements of the
bundle are met. Listing 1 depicts an idiomatic Manifest file for an imaginary bundle named Dummy.

Bundle-ManifestVersion: 2
Bundle-Name: Dummy
Bundle-SymbolicName: a.dummy
Bundle-Version: 0.2.1.build-21
Bundle-RequiredExecutionEnvironment: JavaSE-1.8
Export-Package: a.dummy.p1,
a.dummy.p2;version="0.2.0"

Import-Package: b.p1;version="[1.11,1.13]",
c.p1

Require-Bundle: d.bundle;bundle-version:="3.4.1",
e.bundle;resolution:=optional

Listing 1: An idiomatic MANIFEST.MF file.

In this simple example, the Manifest file declares the bundle a.Dummy in its version 0.2.1.build-21. It
requires the execution environment JavaSE-1.8. The main purpose of this header is to announce what should be
available to the bundle in the standard java.* namespace, as the exact content may vary according to the version
and the implementer of the Java virtual machine on which the framework runs. The Manifest file specifies that
the bundle exports the a.dummy.p1 package, and the a.dummy.p2 package in version 0.2.0. These packages
form the public interface of the bundle—its API. Next, the Manifest file specifies that the bundle requires
the package b.p1 in version 1.11 to 1.13 (inclusive) and the package c.p1. Finally, the Manifest declares a

3https://www.eclipse.org/equinox/
4https://felix.apache.org/
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Table 1: OSGi dependencies headers [37].
Header Description

Bundle-SymbolicName “[...] together with a version must identify a unique bundle”
Bundle-Version “[...] specifies the version of this bundle”
DynamicImport-Package “[...] contains a comma-separated list of package names that should be

dynamically imported when needed”
Export-Package “[...] contains a declaration of exported packages”
Import-Package “[...] declares the imported packages for this bundle”
Require-Bundle “[...] specifies that all exported packages from another bundle must be

imported, effectively requiring the public interface of another bundle”

dependency towards the bundle d.bundle in version 3.4.1 and an optional dependency towards the bundle
e.bundle. We dive into greater details of the semantics of these headers and attributes in the next section.

It is important to note that the Manifest file is typically written by the bundle’s developer herself and has to
co-evolve with its implementation. Therefore, discrepancies between what is declared in the Manifest and
what is actually required by the bundle at the source or bytecode level may arise. Although some tools provide
assistance to the developers (for instance using bytecode analysis techniques on bundles to automatically infer
the appropriate dependencies), getting the Manifest right remains a tedious and error-prone task [34].

2.2 OSGi Dependencies Management

The OSGi specification declares 28 Manifest headers that relate to versioning, internationalization, dependencies,
capabilities, etc. Amongst them, six are of particular interest regarding dependencies management. They are
listed in Table 1. The OSGi specification prescribes two distinct mechanisms for declaring dependencies: at
the package level, or at the bundle level. In the former case, it is the responsibility of the framework to figure
out which bundle provides the required package—multiple bundles can export the same package in the same
version. Conversely, the latter explicitly creates a strong dependency link between the two bundles.

The Import-Package header consists of a list of comma-separated packages the declaring bundle depends on.
Each package in the list accepts an optional list of attributes that affects the way packages are resolved. The
resolution attribute accepts the values mandatory (default) and optional, which indicate, respectively, that
the package must be resolved for the bundle to load, or that the package is optional and will not affect the
resolution of the requiring bundle. The version attribute restricts the resolution on a given version range, as
shown in Listing 1.

When it requires another bundle through the Require-Bundle header, a bundle imports not only a single package
but the whole public interface of another bundle, i.e., the set of its exported packages. As the Require-Bundle

header requires to declare the symbolic name of another bundle explicitly, this creates a strong dependency link
between both. Thus, not only does this header operate on a coarse-grained unit of modularization, but it also
tightly couples the components together.

For a bundle to be successfully resolved, all the packages it imports must be exported (Export-Package) by
some other bundle known to the framework, with their versions matching. Similarly, all the bundles it requires
must be known to the framework, with their versions matching. This wiring process is carried out automatically
by the framework as the bundles are loaded.

Page 4 Version 1.0
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3 OSGi Best Practices

The OSGi specification covers numerous topics in depth and it can be hard for developers to infer idiomatic
uses and good practices. Should dependencies be declared at the package or the bundle level? Can the content
of a package be split amongst several bundles or should it be localized in a single one? These are questions
that naturally arise when attempting to modularize Java applications with OSGi. Although all usages are valid
according to the specification, OSGi experts tend to recommend or discourage some of them.

In this section, we intend to identify a set of best practices in the use of OSGi. We present the systematic
review methodology we employ (Section 3.1) and describe the 11 OSGi best practices we extract (Section 3.2).
In particular, we look for best practices related to the specification of dependencies between bundles, thus
answering our first research question:

Q1 What OSGi best practices are advised?

3.1 Systematic Review Methodology

To perform the identification of best practices related to OSGi dependencies management, we follow the
guidelines specified by Kitchenham et al., which include the definition of the research question, search process,
study selection, data extraction, and search results [21]. In these regards, Q1 is selected as the research question
of the systematic review.

3.1.1 Search process

Given the absence of peer-reviewed research tackling OSGi best practices, we select as primary data sources
web resources of the OSGi Alliance and OSGi-endorsed products. The complete list of certified products5

includes Knopflerfish, ProSyst Software, SuperJ Engine, Apache Felix, Eclipse Equinox, Samsung OSGi, and
KT OSGi Service Platform (KOSP). With the aim to identify best practices, we define a search string that targets
a set of standard best practices synonyms, and their corresponding antonyms:

((good OR bad OR best) AND (practices OR design)) OR smell

Some of the official web pages of the selected organizations provide their own search functionality. However,
we seek to minimize the heterogeneous conditions of the searching environment and only use Google Search to
explore the set of web resources. We use JSoup, an HTML parser for Java, to execute the search queries and to
scrap the results. We compute all possible keyword combinations from the original search string and execute
one query per combination and organization domain. For instance, to search for the best AND practices

keywords in English-written resources on the OSGi Alliance domain, we define the following Google Search
query: http://www.google.com/search?q=best+practices+site:www.osgi.org&domains:www.osgi.or
g&hl=en. We retrieved the resources in January 2018.

5https://www.osgi.org/osgi-compliance/osgi-certification/osgi-certified-products/.

29 June 2018 Version 1.0
Confidentiality: Public Distribution

Page 5

https://www.osgi.org/osgi-compliance/osgi-certification/osgi-certified-products/


D2.3 Dependency Inference and Analysis – Final Report

3.1.2 Study selection

Figure 1 details the resource selection process we follow in this study. First, we only include web resources
written in English in the review. As shown before in the Google Search query, this language restriction is
included as a filtering option in all searches: hl=en. In the end, the search engine returns a total of 268
resources.6

Second, selected documents should describe best practices related to the management of dependencies in
OSGi. To this aim, we conduct a two-task selection where we first consider the occurrences of keywords in the
candidate resources, and then we perform a manual selection of relevant documents. On the one hand, we count
the occurrences of the searched keywords in each web resource (including HTML, XML, PDF, and PPT files).
If one of the keywords is missing in the resource, we automatically discard it. Using this criterion, we reduce
the set to 156 resources, and finally 87 after removing duplicates.

On the other hand, we manually review the resulting set, looking for documents that address the research
question. In particular, if a resource points to another document (through an HTML link) that is not part of
the original set of candidates, it is also analysed and, if it is relevant to the study, it is included as part of our
data sources. This task is performed by two reviewers to minimize selection bias. In the end, we select 21
web resources to derive the list of best practices related to OSGi dependencies specification. Some of the
OSGi-endorsed organizations do not provide relevant information for the study.

Google 
search

Select based on 
keyword occurrences

Remove 
duplicates

Select based 
on relevance

26
8

87 21

Automatic task Task Number of resources

15
6

Figure 1: Resources selection of the systematic review.

3.1.3 Data extraction

During the data extraction phase, we consider the organization that owns the resource (e.g., OSGi Alliance),
its title, year of publication, authors, and the targeted best practices. To have a common set of best practices,
one reviewer reads the selected resources and groups the obtained results in 11 best practices. Afterwards, two
reviewers check which best practices are suggested per web resource. Table 2 presents the results of the review.
The best practices labels in the table correspond to the best practices presented in Section 3.2.

3.2 Dependencies Specification Best Practices

In this section, we review the best practices identified and summarized in Table 2. We elaborate on the rationale
behind each best practice using peer-reviewed research articles and the OSGi Core Specification Release 6 [37].

6https://github.com/msr18-osgi-artifacts/msr18-osgi-artifacts
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Table 2: Systematic review of OSGi dependencies specification best practices.

Resource Year Author(s)
Best practices

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Automatically managing
service dependencies in
OSGi [27]

2005 M. Offer-
mans

# # # # #  # # # # #

OSGi best practices! [16] 2007 B.J. Har-
grave et al.

  #   #  # # # #

Very important bundles [33] 2009 R. Roelof-
sen

 # # # #  # # #  #

OSGi: the best tool in
your embedded systems
toolbox [15]

2009 B. Hackle-
man et al.

 # # # # #  # # # #

bndtools: mostly painless
tools for OSGi [4]

2010 N. Bartlett
et al.

# #  #  # #  # # #

Developing OSGi enterprise
applications [3]

2010 R. Barci
et al.

# # # # # #  # # # #

Experiences with OSGi in
industrial applications [10]

2010 B.
Dorninger

# # # # # #  # # # #

Migration from Java EE ap-
plication server to server-
side OSGi for process man-
agement and event han-
dling [20]

2010 G. Kachel
et al.

# #  # # # # # #  #

10 Things to know you are
doing OSGi in the wrong
way [25]

2011 J. Moliere   # # # #   # # #

Structuring software sys-
tems with OSGi [13]

2011 U. Filde-
brandt

  # # # #  # # # #

Best practices for (en-
terprise) OSGi applica-
tions [38]

2012 T. Ward     # # #   # #

Building a modular server
platform with OSGi [18]

2012 D. Jayakody    # # #   # # #

OSGi application best prac-
tices [19]

2012 E. Jiang   # # # #    # #

TRESOR: the modular
cloud - Building a domain
specific cloud platform with
OSGi [14]

2013 A. Grzesik # # # # # #  # # # #

Guidelines [1] n.d. OSGi
Alliance

# # # # # #  # # # #

OSGi developer certifica-
tion - Professional [2]

n.d. OSGi
Alliance

# # # # #  # # # # #

Using Apache Felix: OSGi
best practices [28]

2006 M. Offer-
mans

 # #  # #  # # # #

OSGi frequently asked ques-
tions [11]

2013 Apache Fe-
lix

# # # # # #  # # #  

Dependency manager -
Background [12]

2015 Apache Fe-
lix

 # # # # #  # # # #

Best practices for program-
ming Eclipse and OSGi [17]

2006 B.J. Har-
grave et al.

 # # # # # # # # # #

OSGi component program-
ming [39]

2006 T. Watson
et al.

 # # # # #  # # # #
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3.2.1 Prefer package-level dependencies [B1]

Dependencies should be declared using the Import-Package header instead of using the Require-Bundle

header. The latter creates a tight coupling between the requiring bundle and the required bundle, which is an
implicit dependency towards an implementation rather than an interface. Thus, it impacts the flexibility of
dependency resolution, as the resolver has only one source to provide the dependency (i.e., the required bundle
itself). This also naturally complicates refactoring activities: moving a package from one bundle to the other
requires patching all bundles depending on it to point to the new bundle. In contrast, the Import-Package header
only relies on an interface and various bundles may offer the corresponding package. Finally, Require-Bundle
automatically imports all the exported packages of the required bundle, which may introduce unnecessary
dependencies. This can get worse in some cases, since package shadowing can be introduced unwittingly [37],
leading to non-trivial debugging issues.

3.2.2 Use versions when possible [B2]

Versions should be set when requiring bundles, or when importing or exporting packages. When a bundle
requires another bundle or imports a package, a version range or a minimum required version can be defined.
Versions must be consciously used to control the dependencies of a bundle, avoiding the acceptance of new
versions that might break the component. Version ranges are preferred over minimum versions, because both
upper and lower bounds, as well as all in between versions, are supposed to be tested and considered by bundle
developers [9]. In addition, with version ranges the dependency resolver has fewer alternatives to resolve the
given requirements, allegedly speeding up the process.

3.2.3 Export only needed packages [B3]

Only the packages that may be required by other bundles should be exported. Internal and implementation
packages should be kept hidden. Because the set of exported packages forms the public API of a bundle, changes
in these packages should be accounted for by the clients [8]. Consequently, the more packages are exported, the
more effort is required to maintain and evolve the corresponding API.

3.2.4 Minimize dependencies [B4]

Unnecessary dependencies should be avoided, given their known impact on failure-proneness [6] and perfor-
mance of the resolution process. In the case of OSGi framework and the employment of the Require-Bundle

header, a required bundle might depend on other bundles. If these transitive dependencies are not considered in
the OSGi environment, then the requiring bundle may not be resolved [37]. Moreover, dependencies specifica-
tion in Require-Bundle and Import-Package headers may impact performance during the resolution process
of the OSGi environment. A bundle is resolved if all its dependencies are available [37]. Presumably, the more
dependencies are added to the Manifest file, the longer the framework will take to start and resolve the bundle
assuming that all dependencies are included in the environment.

3.2.5 Import all needed packages [B5]

All the external packages required by a bundle must be specified in the Import-Package header. If this is not
the case, a ClassNotFoundException may be thrown when there is a reference to a class of an unimported
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package [37]. This also applies to dynamic dependencies, e.g., classes that are dynamically loaded using the
reflective API of Java. The only packages that are automatically available to any bundle are the ones defined in
the namespace java.*, which are offered by the selected execution environment. However, this environment
can offer other packages included in other namespaces. Thus, if these packages are not explicitly imported and
the execution environment is modified, they will become unavailable and the bundle will not get resolved.

3.2.6 Avoid DynamicImport-Package [B6]

This header lists a set of packages that may be imported at runtime after the bundle has reached a resolved state.
In this case, dependency resolution failures may appear in later stages in the life cycle of the system and are
harder to diagnose. This effectively hurts the fail fast idiom adopted by the OSGi framework [35]. Also, the
DynamicImport-Package creates an overhead due to the need to dynamically resolve packages every time a
dynamic class is used [37].

3.2.7 Separate implementation, API, and OSGi-specific packages [B7]

It is highly recommended to separate API packages from both implementation and OSGi-specific packages.
Therefore, many implementation bundles can be provided for a given API, favouring system modularity. The
OSGi service registry is offered to select an implementation once a bundle is requiring and using the associated
API packages. With this approach, API packages can be easily exported in isolation from implementation
packages, allowing a change of implementation if needed. Moreover, implementation changes that result in
breaking changes for clients’ bundles are avoided. The abovementioned APIs are known as clean APIs, i.e.,
exported packages that do not use OSGi, internal, or implementation packages in a given bundle [37].

3.2.8 Use semantic versioning [B8]

Semantic versioning7 is a version naming scheme that aims at reducing risks when upgrading dependencies.
This goal is achieved by providing concrete rules and conventions to label breaking and non-breaking software
changes [32]. Following these rules, a version number should be defined as major.minor.micro. In some cases,
the version number is extended with one more alphanumerical slot known as qualifier. The major number
is used when incompatible changes are introduced to the system, while the other three components represent
backward-compatible changes related to functionality, bugs fixing, and system identification, respectively. The
use of semantic versioning supposedly communicates more information and reduces the chance of potential
failures.

3.2.9 Avoid splitting packages [B9]

A split package is a package whose content is spread in two or more required bundles [37]. The main pitfalls
related to the use of split packages consist on the mandatory use of the Require-Bundle header, which is
labelled as a bad practice, and the following set of drawbacks mentioned in the OSGi Core Specification [37]: (i)
completeness, which means that there is no guarantee to obtain all classes of a split package; (ii) ordering, an
issue that arises when a class is included in different bundles; (iii) performance, an overhead is introduced given
the need to search for a class in all bundle providers; and (iv) mutable exports, if a requiring bundle visibility

7http://semver.org/
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directive is set to reexport, its value may suddenly change depending on the visibility value of the required
bundle.

3.2.10 Declare dependencies that do not add value to the final user in the Bundle-Classpath

header [B10]

If a non-OSGi dependency is used to support the internal functionality of a bundle, it should be specified in
the Bundle-Classpath header. These dependencies are known as containers composed by a set of entries,
which are then grouped under the resources namespace. They are resolved when no package or bundle offers
the required functionality [37]. Given that a subset of these resources is meant to support private packages
functionality, they should be kept as private packages and defined only in the classpath of the bundle.

3.2.11 Import exported API packages [B11]

All the packages that are exported and used by a given bundle should also be imported. This may seem counter-
intuitive, as exported packages are locally contained in a bundle and can thus be used without being imported
explicitly. Nevertheless, it is a best practice to import these packages explicitly, so that the OSGi framework can
select an already-active version of the required package. Be aware that this best practice is only applicable to
clean API packages [37].
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4 Metrics for OSGi Best Practices

In this section, we introduce a set of OSGi metrics that we specify and use to assess whether OSGi best practices
are being followed in a given corpus. Some metrics are defined at the bundle levels and others at the corpus
level so that distributions can be easily computed. These metrics are linked to the corresponding best practices
and their associated goals, as depicted in Table 3. Note that these metrics rely on an analysis of the Manifest
files together with the actual bytecode of the bundles. For instance, we use bytecode analysis to determine
whether imported packages and bundles are actually used in the code of a bundle to detect superfluous imports.

We use these metrics to implement our OSGi analysis tool (cf. Section 5) and to report on the use of best
practices in the main P2 repository of Eclipse 4.6 (cf. Section 6).

Table 3: Metrics used to assess OSGi best practices.

Level Best DescriptionPractice

C
or

pu
s

B1 Ratio of bundles using Import-Package header
B1 Ratio of bundles using Require-Bundle header
B1 Ratio of bundles using both Import-Package and Required-Bundle header
B3 Number of bundles exporting a given package
B2 Ratio of bundles with the Bundle-Version header
B2 Ratio of bundles with at least a major.minor version specification
B6 Ratio of bundles using the DynamicImport-Package header

B
un

dl
e

B1/B4/B5 Number of imported packages
B1/B4 Number of required bundles

B1/B3/B4 Ratio of unused packages imported with the Required-Bundle header
B1/B3/B4 Number of redundant packages. Packages specified in the Import-Package header and

obtained from a required bundle
B2 Ratio of imported packages with the version or specification-version attribute
B2 Ratio of exported packages with the version or specification-version attribute
B2 Ratio of required bundles with the bundle-version attribute
B2 Ratio of imported package versions defined as a version range
B2 Ratio of required bundle versions defined as a version range
B2 Ratio of imported packages with at least a major.minor version specification
B2 Ratio of exported packages with at least a major.minor version specification
B2 Ratio of required bundles with at least a major.minor version specification
B3 Ratio of exported packages that are never imported

B1/B4 Ratio of unused packages imported with the Import-Package header
B1/B4 Ratio of unused transitive packages imported with the Require-Bundle header (reexport)
B1/B4 Ratio of unused transitive packages imported with the Import-Package header (uses)

B5 Ratio of used external packages without an explicit import in the Require-Bundle or
Import-Package headers

B6 Ratio of imported packages with the split directive
B6 Ratio of exported packages with the split directive
B5 Ratio of imported java.* packages

B1/B5 Number of packages that are both imported and exported within a given bundle
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5 An Analysis Tool for OSGi

In this section, we give a brief introduction to the tool we developed for OSGi analysis, recommendation, and
refactoring. We refer the reader to D2.4 – Dependency Inference Components for in-depth information about
the tool and how it has been integrated within the CROSSMINER architecture.

Figure 2 gives an overview of the proposed approach for dependency inference, analysis, and recommendation.
As exemplified in Section 6, the tool we developed supports partially or fully all four phases of the process: data
extraction, analysis, recommendation, and refactoring.

The analysis tool is fully implemented with Rascal, a meta-programming language that supports source code
analysis, transformation, and generation [22]. The main input of the tool is a set of bundles in the form of
source code or JAR files that contain Manifest files and Java bytecode. Rascal comes with a built-in Java parser
that can analyse either source code or bytecode and store information about method invocations, inheritance
hierarchy, field access, etc. in a set of relations named the Java M3 model [5]. For OSGi Manifest files,
we implemented a custom parser that can parse Manifest files according to the syntax defined in the OSGi
Specification Release 6 [37].

From a set of JAR files, the tool extracts a Java M3 model and an OSGi M3 model. The OSGi M3 model is an
abstraction of the information extracted from the JARs in the form of a set of relations that store actionable
information regarding OSGi dependencies. This set of relations forms a dependency graph that can be easily
queried by our recommendation and refactoring tools. Besides, any metric provider of the CROSSMINER
platform can easily access these relations to define bespoke analysis and recommendations.

Figure 2: Proposed approach for dependencies inference, analysis, and recommendation.
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6 An Analysis of Eclipse P2 Repositories

The best practices we identify in Section 3 emerge from experts of the OSGi ecosystem. The goal of the
following two research questions is to assess their relevance and impact critically:

Q2 Are OSGi best practices being followed?

Q3 Does each OSGi best practice have an observable effect on the relevant qualitative properties of an OSGi
bundle?

Specifically, because beyond their qualitative aspect they are meant to improve performance, we study their
impact on the classpath size and resolution time of individual bundles. We first discuss the initial setup and
method of our evaluation, and then go through all the selected best practices, aiming at answering our research
questions for each of them. After some concluding remarks, we discuss the threats to validity. A complete
description of all the artefacts discussed in this section (corpora, transformations, results), along with their
source code, is available on the companion webpage.8

6.1 Studied Corpus

We use an initial corpus consisting of 1,124 OSGi bundles (cf. Table 4) corresponding to the set of core plug-ins
of the Eclipse IDE 4.6 (Neon.1). This corpus was supplied by our use case partner Eclipse Foundation Europe in
the context of the CROSSMINER project. The Eclipse IDE consists of a base platform that can be extended and
customized through plug-ins that can be remotely installed from so-called update sites. Both the base platform
and the set of plug-ins are designed around OSGi, which enables this dynamic architecture. The Eclipse IDE
relies on its own OSGi-certified implementation of the specification: Eclipse Equinox. Because the Eclipse
IDE is a mature and widely-used platform, its bundles are supposed of high quality. As they all contribute to
the same system, they are also highly interconnected: the combination of Import-Package, Require-Bundle,
and DynamicImport-Package dependencies results in a total of 2,751 dependency links. As a preliminary step,
we clean the corpus to eliminate duplicate bundles and bundles that deviate from the very nature of Eclipse
plug-ins. This includes:

• Bundles with multiple versions. We only retain the most recent version for each bundle to avoid a statistical
bias towards bundles which (accidentally) occur multiple times for different versions.

• Documentation bundles that neither contain any code nor any dependency towards other bundles are considered
as outliers to be ignored. The best practices are specifically about actual code bundles, so these documentation
bundles would introduce arbitrary noise.

• Source bundles that only contain the source code of another binary bundle are ignored since they are a
(technical) accident not pertaining to the best practices either.

• Similarly, test bundles which do not provide any functionality to the outside would influence our statistical
observations without relating to the studied best practices.

We identify and remove these bundles from the corpus according to their names. The (strong) convention in this
Eclipse corpus is that these, respectively, end with a .doc, .source, or .tests suffix. The remaining bundles
constitute our control corpus C0.

8https://github.com/msr18-osgi-artifacts/msr18-osgi-artifacts
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Table 4: Characteristics of the Eclipse 4.6 OSGi corpus.
Attribute Value

Initial corpus size 1,124
Number of documentation bundles 17
Number of source bundles 446
Number of test bundles 97
Number of duplicate bundles 192

Studied corpus (C0) 372
Total size of C0 (MB) 163.76
Number of dependencies declared in C0 2,751

6.2 Method

The overall analysis process we follow is depicted in Figure 3 and detailed below.
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Figure 3: Analysis process.

6.2.1 Selected best practices

For the current analysis, we focus on a subset of the best practices ([B1–B6]) elicited in Section 3, which can be
studied using a common research method. The other best practices are interesting as future work: [B7, B10,
B11] require distinguishing between implementation and API packages, [B8] requires distinguishing between
breaking and non-breaking software changes, and [B9] requires refactoring the source code organization of the
bundles in addition to their meta-data.

Are OSGi best practices being followed? (Q2) To answer this research question, we develop an analysis
tool, written in Rascal [22], that computes a set of metrics on the control corpus C0. Specifically, the tool
analyses the meta-data (the Manifest files) and bytecode of each bundle to record in which way dependencies
and versions are declared, which packages are actually used in the bytecode compared to what is declared in
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their meta-data, etc. Based on this information, we then count per best practice how many bundles (or bundle
dependencies) satisfy it in the corpus. Using descriptive statistics, we then analyse the support for the best
practice in the corpus to answer Q2. For each best practice, based on the maturity of the Eclipse corpus the
hypothesis is that they are being followed (H2.i).

Does each OSGi best practice have an observable effect on the relevant qualitative properties
of an OSGi bundle? (Q3) To answer this research question, we hypothesize that each best practice would
indeed have an observable impact on the size of dynamically computed classpaths (H3.1.i) and on the time
it takes to resolve and load the bundles (H3.2.i). If either hypothesis is true, then there is indeed evidence of
observable impact of the best practice of some kind, if not then deeper analysis based on hypothesizing other
forms of impact would be motivated. We are also interested to find out if there exists a correlation between
classpath size and related resolution time (H3.3). Since the latter requires an accurate time measurement
setup, while the former can be computed from meta-data, it would come in handy for IDE tool builders
(recommendations, smell detectors, and quick fix) if classpath size would be an accurate proxy for bundle
resolution time.

Figure 3 depicts how we compare the original corpus C0 to alternative corpora Ci in which each best practice
Bi has been simulated. For each Bi, a specialized transformation T (Bi) takes as input the control corpus C0

and turns it into a new corpus C0
T (Bi)−−−→ Ci where bundles are automatically transformed to satisfy the best

practice Bi. For all transformations T (Bi), we ensure that for all bundles that can be resolved in the original
corpus, the corresponding bundle in the transformed corpus can also be resolved.

For instance, the transformation T (B1) transforms every Require-Bundle header to a set of corresponding
Import-Package headers, according to what is actually used in the bundle’s bytecode. Note that bundles
using extension points declared by other bundles must use the Require-Bundle header and therefore cannot
be replaced with the corresponding Import-Package headers. Below, we discuss such detailed considerations
with the result of each transformation.

Then, we load every corpus Ci in a bare Equinox OSGi console and compute, for every bundle, (i) the size of its
classpath, including the classes defined locally and the classes that are accessible through wiring links according
to the semantics of OSGi, and (ii) measure the exact time it takes to resolve it.

Resolution time of a bundle is measured as the delta between the time it enters the INSTALLED state (“The
bundle has been successfully installed”) and the time it enters the RESOLVED state (“All Java classes that the
bundle needs are available”), according to the state diagram given in the OSGi specification [37, p. 107].

To report a change in terms of classpath size or performance, we also compute the relative change between
observations in Ci and observations in C0 as dij =

v0j−vij
v0j

× 100%, where dij is the relative change between

the jth observation of C0 (i.e., v0j) and the corresponding observation in Ci (i.e., vij). The median (x̃) value of
the set of relative changes is used as a comparison measure.9 All performance measurements are conducted on
a macOS Sierra version 10.12.6 with an Intel Core i5 processor 2GHz, and 16GB of memory running OSGi
version 3.11.3 and JVM version 1.8. Measurements are executed 10 times each after discarding the 2 initial
warm-up observations [7].

6.3 Results

To evaluate H3.3 we use both scatter plots and correlations (per corpus) that show the relation between our
two studied variables, classpath size and resolution time. Figure 4 shows the graph to identify the hypothesized

9We use x̃c and x̃p, respectively, for classpath size and performance comparisons.
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Figure 4: Classpath size is a poor indicator for resolution time (ms) in C0 (ρ0 = −0.17).

correlation in C0. Given that there is no linear relation between the variables, we compute the non-parametric
Spearman’s rank correlation coefficient ρ0 = −0.17, resulting in a weak negative relation. Similar results
are observed on all corpora Ci: ρ1 = −0.06, ρ2 = −0.17, ρ3 = −0.11, ρ4 = −0.13, ρ5 = −0.17, and
ρ6 = −0.17. According to both visual and statistical analysis, we can reject hypothesis H3.3. Therefore, it
remains interesting to study these variables independently.

The benchmark results regarding classpath size and resolution time for every corpus Ci, compared to the control
corpus C0, are given in Figures 5 and 6. As reference we show the relation y = x in all figures. Data points
positioned over the function show a worse behaviour of Ci with regards to C0 results, whilst points positioned
under the relation elucidates better results. A further description of the obtained results is described in the
remainder of the section.

6.3.1 Prefer package-level dependencies [B1]

H2.1 To test this hypothesis, we count the number of bundles using the Require-Bundle and
Import-Package headers. We cross-analyse these results by computing the number of extension plug-ins
and the number of bundles declaring split packages, which may impact the use of the Require-Bundle header.
The bundles declare 1,283 Require-Bundle dependencies and 1,459 Import-Package dependencies. 57.79%
of the bundles use the Require-Bundle header, 50.00% use the Import-Package header, and 34.95% use both.
These results suggest that this best practice tends not to be widely followed by Eclipse plug-ins developers. The
declaration of extension points and extension bundles, as well as the use of split packages, contribute to these
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results. In fact, 38.98% of the bundles in C0 are extension bundles that require a dependency on the bundle
declaring the appropriate extension point to provide the expected functionality. Two of the bundles in C0 use a
Require-Bundle dependency to cope with the requirements of split packages.

H3.1.1 and H3.2.1 Transforming bundle-level dependencies to package-level dependencies reduces the
classpath size of bundles by x̃c = 15.40%. This is because, in the case of Require-Bundle, every exported
package in a required bundle is visible to the requiring bundle, whereas the more fine-grained Import-Package

only imports the packages that are effectively used in the bundle’s code. We observe a gain of x̃p = 7.11%
regarding performance (Figure 6).

6.3.2 Use versions when possible [B2]

H2.2 To tackle this question, we compute the number of versioned Require-Bundle, Import-Package,
and Export-Package relations and the proportion of those that specify a version range. 84.80% of the
Require-Bundle dependencies are versioned, of which 71.97% (i.e., 783) use a version range. In the case
of Import-Package, 59.22% of the dependencies are versioned, of which 45.14% use a version range. Fi-
nally, 24.88% of the 2,620 exported packages tuples are explicitly versioned. The remaining tuples get a
value of 0.0.0 according to the OSGi specification. We observe a tendency to use versions when defining
Require-Bundle relations, which is highly advised given the need to maintain a tight coupling with a specific
bundle. Nonetheless, the frequency of version specifications decreases when using Import-Package and even
more so with Export-Package.

H3.1.2 and H3.2.2 The transformation T (B2) takes all unversioned Import-Package and
Require-Bundle headers in C0 and assigns a strict version range of the form [V , V ] to them, where V
is the highest version number of the bundle or package found in the corpus. In the resulting corpus C2, we ob-
serve that this best practice has no impact on classpath size (x̃c = 0%), and close to zero impact on resolution
time (x̃p = 1.56%) of individual bundles.

6.3.3 Export only needed packages [B3]

H2.3 In this case, we investigate how many of the exported packages in the corpus are imported by other
bundles, using either Import-Package or Require-Bundle, taking versions into account. If an exported
package is never imported, this may indicate that this package is an internal or implementation package that
should not be exposed to the outside. There may, however, be a fair number of false positives: some of the
exported packages may actually be part of a legitimate API but are just not used by other bundles yet. From the
whole set of exported package tuples, 14.62% are explicitly imported by other bundles. This suggests that a
large portion of the packages that are exported are never used by other bundles. Nevertheless, if we also consider
packages imported through the Require-Bundle header, at least 80.34% of the total tuples are imported by
other bundles. The question that arises is: is this situation intended, or is it a collateral effect of the use of
Require-Bundle?

H3.1.3 and H3.2.3 [B3] has an impact on classpath size in the transformed corpus C3: exporting only the
needed packages results in a x̃c = 23.27% gain sizewise. We also observe an improvement of x̃p = 12.83% in
terms of resolution time for individual bundles.
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6.3.4 Minimize dependencies [B4]

H2.4 To investigate whether bundles declare unnecessary dependencies, we cross-check the meta-data
declared in the Manifest files with bytecode analysis. We deem any package that is required but never used
in the bytecode as superfluous. In the corpus, 19.25% of the Require-Bundle dependencies are never used
locally, i.e., none of the packages of the required bundle are used in the requiring bundle’s code. Regarding
Import-Package dependencies, 13.78% of the explicitly-imported packages are not used in the bytecode.
Digging deeper into the relations, we find that the Require-Bundle declarations are implicitly importing 15,399
packages that have been exported by the corresponding required bundles. From this set, only 16.50% are actually
used in the requiring bundle bytecode. These results suggest that developers tend not to use all the dependencies
they declare and that these could be minimized. The situation is much worse in the case of implicitly imported
packages through the Require-Bundle header, which backs the arguments of [B1].

H3.1.4 and H3.2.4 [B4] has a close to zero impact on classpath size in the transformed corpus C4 (x̃c =
0.14%). However, the improvement is higher with regards to resolution time (x̃p = 7.24%).

6.3.5 Import all needed packages [B5]

H2.5 We compute the number of packages that are used in the code but are never explicitly imported in the
Manifest file by analysing the bundles meta-data and bytecode. Our analysis identifies 2,194 packages (269
unique) that are never explicitly imported. Overall, 45.70% of the bundles in C0 use a package that they do not
explicitly import (excluding java.* packages).

H3.1.5 and H3.2.5 For every package that can be found somewhere in the corpus but is missing in the
Import-Package list of a given bundle, the transformation T (B5) creates a new Import-Package statement
pointing to it. The resulting corpus C5 does not differ from C0 in terms of classpath size but appears to be
slower in terms of resolution time (x̃p = −13.35%). By creating new explicit dependencies to be resolved, this
best practice adds to the dependency resolution process, which in turn may explain this difference.

6.3.6 Avoid DynamicImport-Package [B6]

H2.6 In the corpus, only 7 bundles declare DynamicImport-Package dependencies, for a total of 9 dynamic
relations declared in C0. 4 of these dynamically imported packages are not exported by any bundle. This may
result in runtime exceptions after the resolution of the involved bundles. While there are some occurrences
in the corpus of this not-advisable type of dependency, results suggest that developers tend to avoid using the
DynamicImport-Package header and thus generally follow this best practice.

H3.1.6 and H3.2.6 We do not observe any impact in terms of classpath size, and in terms of performance
we observe a gain of x̃p = 3.47%. As our benchmark stops at resolution time and [B6] only has an impact after
resolution time, this is unsurprising.

6.4 Analysis of the results

Figure 7 summarizes the overall results regarding relative change of our analysis for classpath size and resolution
time. In both graphs we show the relative change of classpath size and resolution time results of Ci with regards

Page 18 Version 1.0
Confidentiality: Public Distribution

29 June 2018



D2.3 Dependency Inference and Analysis – Final Report

to C0. In the case of classpath size, results obtained above y = 0 show the existence of shorter classpaths due
to the introduction of the corresponding best practice (Bi). Similarly, in the case of resolution time, results
obtained above y = 0 entail better performance results when resolving the studied bundles.

6.4.1 Are OSGi best practices being followed? (Q2)

Overall, we observe that most of the best practices we identify are not widely followed in the corpus. This is for
instance the case with [B1], despite being the most-widely advocated best practice among the ones we select
(cf. Table 2).

Q2: OSGi best practices related to dependency management are not widely followed within the Eclipse
ecosystem.

6.4.2 Does each OSGi best practice have an observable effect on the relevant qualitative prop-
erties of an OSGi bundle? (Q3)

[B1] and [B3] appear to have a positive impact on classpath size (15.40% and 23.27%, respectively), whereas
we observe a close to zero impact for [B2], [B4], [B5], and [B6]. Moreover, five of the selected best practices
(i.e., [B1], [B2], [B3], [B4], and [B6]) show an improvement on performance that oscillates between 1.55% and
12.83%. [B5] shows a negative impact of 13.35% relative change for the same variable. The absence of larger
gains may be explained by the fact that the time required to build the classpath is negligible compared to the
other phases involved in bundle resolution (e.g., solving dependencies constraints, as can be observed for [B5]).

Q3: Only one third of the OSGi best practices we analyse have a positive impact (of up to ∼23% change)
on the classpath size of individual bundles. Either way, impact on resolution times does not exceed ±13%
relative change for all practices.

6.5 Threats to Validity

Our analysis is naturally subject to threats to validity that challenge our conclusions. Hereafter we present our
identified external and internal threats.

6.5.1 External Validity

In principle, the construct of measuring classpath size and resolution time for OSGi bundles can show the
presence of a specific kind of impact of a best practice, but not the absence of any other kind of impact. Hence,
for where we observed no impact, future analysis of possible other dependent quality factors (e.g. coupling
metrics) is duly motivated. However, since the prime goal of OSGi is configuring which bundles to dynamical
load into the classpath, any change to OSGi configuration must also be reflected in the classpath. Therefore, in
theory, we would not expect any other unforeseen effects when a classpath does not change much.

Although relevant, our research methods did not focus on the downstream effects of OSGi best practices on
system architecture or object-oriented design quality in source code. However, minor changes to a classpath
may have large impact on those aspects, in particular class visibility may impact software evolution aspects
such as design erosion and code cloning. In IDEs specifically, performance is not always a key consideration
and other aspects of dependency management remain to be studied as future work.
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6.5.2 Internal Validity

With respect to internal validity of the research methods, we calculated classpath size using the OSGi classloader
and wiring APIs. Internally, for every bundle, OSGi creates a Java classloader that holds every class local to
the bundle, plus all the classes of the bundles it depends on, regardless of the granularity of the dependencies,
their visibilities, etc. The OSGi classloaders, on the other hand, hide classes from the required bundles when
necessary, e.g., when a bundle only requires a few packages from another one using the Import-Package header.
We aimed to calculate classpath size as seen by the OSGi framework itself, but results may vary if we look at
Java classloaders instead. Besides, our analysis and transformation tools may be incorrect in some way. We
tried to mitigate this pitfall by having our code written and reviewed by three developers, as well as by writing a
set of sanity tests that would catch the most obvious bugs.

The corpus we use for the analysis may also greatly influence the results we obtain for Q2—our conclusions
only hold for the Eclipse IDE. Nonetheless, we tried to mitigate this effect as much as possible, for instance by
taking into account the specificities of the extensions and extension points mechanism within Eclipse which
influences our conclusions for [B1]. Similarly, for Q3, a different implementation of the OSGi specification
may influence the benchmark results.
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Figure 5: Comparing classpath size of corpora Ci (with best practices Bi applied) to the original
corpus C0.
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Figure 6: Comparing resolution time (ms) of corpora Ci (with best practices Bi applied) to the original
corpus C0.

Page 22 Version 1.0
Confidentiality: Public Distribution

29 June 2018



D2.3 Dependency Inference and Analysis – Final Report

●

●

●●
●●
●●●●●●●●●●●●

●

●
●●
●●

●●

●
●

●●●

●

●●●●●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●●

●●

●

●

●●

●

●●

●

●

●
●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

C1 C2 C3 C4 C5 C6

−200

−150

−100

−50

0

50

100

C
la

s
s
p
a
th

 S
iz

e
 R

e
la

ti
ve

 C
h
a
n
g
e
 (

in
 %

)

S
h

o
rt

e
r

L
a

rg
e

r

C1 C2 C3 C4 C5 C6

−15

−10

−5

0

5

10

15

Corpus

R
e
s
o
lu

ti
o
n
 T

im
e
 R

e
la

ti
ve

 C
h
a
n
g
e
 (

in
 %

)

F
a

s
te

r
S

lo
w

e
r

Figure 7: Relative change in classpath size and resolution time between the control (C0) and trans-
formed corpora (Ci).
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7 Results Summary

In this section, we first conducted a systematic review of OSGi best practices to formally document a set of 11
known best practices related to dependency management. We then focused on 6 of them and, using a corpus of
OSGi bundles from the Eclipse IDE, we studied whether these best practices are being followed by developers
and what their impact is on the classpath size and bundle resolution times. On the one hand, the results show that
many best practices tend not to be widely followed in practice. We also observed a positive impact of applying
two of the best practices (artificially) to classpath sizes (i.e., [B1] and [B3]), from which we cannot conclude
that the respective best practices are irrelevant. Based on this we conjecture most of the identified advice is
indeed relevant. Deeper qualitative analysis is required to validate this. On the other hand, the performance
results show that OSGi users can expect a performance improvement of up to ±13% when applying certain best
practices (e.g., [B3]).
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Part II

Mining Dependencies from Apache Maven
Projects

8 Introduction

Apache Maven (hereinafter referred to simply as Maven) is a build automation tool highly popular in the
Java ecosystem. Maven enables developers to easily declare (i) how to build projects written in Java (source
generation, compilation, testing, etc.) and (ii) how to resolve their dependencies. Dependencies are declared
in a standard way by the project’s developers and are automatically resolved and downloaded from one or
many Maven artefact repositories. As of 2018-06-20, 2,881,582 artefacts are hosted on the Maven Central
Repository,10 one of the most popular repository of Maven artefacts against which project dependencies are
resolved by default.

In contrast to OSGi, Maven has been the subject of extensive research, in particular regarding the way developers
manage their dependencies (e.g., [30, 32, 24, 23, 31]).

In this part:

• We first present some background notions on Maven, POM files, and dependency management in
Section 9;

• Then, we detail the approach we follow to extract knowledge regarding dependencies of Maven projects
in Section 10.

9 Background: Apache Maven

The central artefact defining how to build and how to resolve dependencies of a Maven project is the Project
Object Model (POM), conventionally written down in XML format in a pom.xml file. Maven projects may
be split in multiple sub-modules, each of which possibly declares its own build process and dependencies in a
dedicated pom.xml file.

Listing 2 depicts an idiomatic POM file for an imaginary bundle named Dummy. It declares the configuration of a
project dummmy, version 1.0 in the group org.crossminer.dummy. The tuple 〈groupId, artifactId, version〉
is referred to as the unique “coordinates” of the project. Coordinates are used to uniquely identify a Maven
artefact; either a local one or one that can be resolved from a remote Maven repository. In particular, coordinates
are used to resolve a project’s dependencies. In Listing 2, the project dummy depends on the junit version 3.8.1

in the junit group. The <scope> attribute specifies that, in this case, the JUnit dependency is only needed at
test time. Thus, it will not be included in the compile time and run time classpaths.

Multiple Maven projects can be linked in different ways. A Maven project may include other Maven projects
as sub-modules. A Maven project may extend the configuration of a parent Maven project to reuse its build
specification.

10https://search.maven.org/
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<project>
<modelVersion>4.0.0</modelVersion>

<groupId>org.crossminer.dummy</groupId>
<artifactId>dummy</artifactId>
<version>1.0</version>

<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>

</dependency>
</dependencies>

</project>

Listing 2: An idiomatic pom.xml file.

A popular extension of Maven is Tycho:11 “a Maven-centric, manifest-first approach to building Eclipse plug-
ins, features, update sites, RCP applications and OSGi bundles”. Specifically, it allows Eclipse developers to
automatically build their OSGi-based Eclipse plug-ins which, as stated in Part I, declare their dependencies in a
MANIFEST.MF file rather than in a pom.xml file. Tycho bridges the gap between MANIFEST.MF specifications
and the Maven build process. Tycho is for instance extensively used in the Eclipse use case of CROSSMINER.
The dependency mining, analysis, and refactoring facilities presented in Part I apply in this case.

10 Extracting Dependencies from POM Files

Following the approach we propose for OSGi (cf. Part I), we extract dependencies from Maven meta-data
files. To support the inference of Maven project build configuration and dependencies, we built a tool in
Rascal that parses all pom.xml within a given project (including its sub-modules) to extract the appropriate
information. Specifically, the tool dives into the <dependencies> section to extract the list of dependencies,
their “coordinates” (groupId, artifactId, and version), and their scope, i.e., the build phase’s classpath
it should be included in (compile-time dependencies, run-time dependencies, etc.). An excerpt of the code
realizing this task is given in Listing 3. As shown, our tool leverages the built-in XML parser of Rascal to
browse through the POM meta-data and extract relevant information related to dependencies.

The resulting dependency model is stored in the Rascal algebraic data type depicted in Listing 4, named the
Maven M3 model. For every POM identified by the loc id, it stores a map from logical to physical locations
of its (sub-)modules, and exhaustive information about the dependencies it declares, including dependency-
specific parameters such as its scope. The latter naturally builds a dependency graph between Maven artefacts
identified by a unique logical location. Multiple MavenModels can be composed together to build the overall
dependency graph of a set of projects, such as the ones analysed by the CROSSMINER platform.

Analysis tools, metrics, recommenders, and refactoring tools can be defined atop the Maven M3 model. The
metric depicted in Listing 5, for instance, uses it to compute the number of optional dependencies declared by a
given Maven project analysed by the CROSSMINER platform. It first retrieves the Maven M3 model of the

11https://www.eclipse.org/tycho/
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rel[loc,loc,map[str,str]] getProjectDependencies(loc logical, Node dom) {
rel[loc,loc,map[str,str]] dependencies = {};
if(/Node ds:element(_,"dependencies",_) := dom) {
for(/Node d:element(_,"dependency",_) := ds) {
groupId = getElementFromDOM("groupId",ds);
artifactId = getElementFromDOM("artifactId",ds);
version = getElementFromDOM("version",ds);
dependencies += {<logical, createProjectLogicalLoc(groupId,artifactId,version),

getDependencyParams(d)>};
}

}
return dependencies;

}

Listing 3: Extracting project dependencies from POM files in Rascal.

data MavenModel = mavenModel (
loc id,
rel[loc logical, loc physical, map[str,str] params] locations = {},
rel[loc project, loc dependency, map[str,str] params] dependencies = {}

);

Listing 4: Maven M3 model in Rascal.

project currently being analysed, and it uses a simple Rascal comprehension to retrieve all the dependencies that
have their optional attribute set to true.
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@metric{numberOptionalMavenDependencies}
@doc{Retrieves the number of optional Maven dependencies.}
@friendlyName{Number optional Maven dependencies}
@appliesTo{java()}
int numberOptionalMavenDependencies(
ProjectDelta delta = ProjectDelta::\empty(),
map[loc, loc] workingCopies = ()) {
if(repo ←workingCopies) {
m = getMavenModelFromWorkingCopy(workingCopies[repo]);
return (0 | it + 1 | <p,d,params> ←m.dependencies, params["optional"]=="true");

}
return 0;

}

Listing 5: Writing a metric atop the Maven M3 model.
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Part III

Relation to other Work Packages and
Requirements Satisfaction

11 Relation to Other Work Packages

This document presents the results we obtained in the context of Task 2.1 and Task 2.2. It builds upon and
extends the results presented in D2.1 – Dependency Inference and Analysis – Initial Report and D2.2 –
Framework Modelling Components. More specifically, we report on two predominant frameworks in the
Java ecosystem related to dependency management: OSGi (Part I) and Apache Maven (Part II). An in-depth
presentation of the software artefacts we developed in this context is available in D2.4 – Dependency Inference
Components.

There are many natural cross-fertilizations between WP2 – Mining Source Code and WP4 – Mining System
Configurations. While WP2 focuses on the extraction of factual dependencies from project meta-data, source
code, and bytecode, WP4 focuses on the analysis of system-level configuration files, which may be used to refine
and enrich our own analysis of dependencies. We plan to investigate the relation between dependencies declared
at the software level (e.g., OSGi Manifest files and Maven pom files) and at the system level (e.g., Puppet
and Docker configuration files). A possible output would be a common formalism for expressing dependency
graphs, so that analyses and recommendations can be factorized, when possible.

Similarly, we plan to investigate how the knowledge extracted from dependencies could help identify relation-
ships between projects and libraries, as part of WP6 – Mining Cross-Project Relationships. For instance,
some of the approaches presented in D6.3 – The CROSSMINER Knowledge Base – Interim Version rely
on the inference of project dependencies to discover similar projects: the similarity of two projects can be deter-
mined by considering the set of common dependencies. More generally, all the metrics and analyses developed
in the context of WP2 – Mining Source Code are meant to feed the Knowledge Base which acts as a medium
between the metrics and the final developer.

The analyses we present in this document are not tailored to a particular project: they are meant to analyse
OSGi bundles and Maven projects regardless of the actual client code that may rely on them. A primary goal of
CROSSMINER, however, is to tailor the analyses to help developers understand and manage their dependencies
directly within their IDE, for the particular project they are currently developing. In the remainder of the project,
we will thus strengthen our collaboration with WP7 – Advanced Integrated Development Environments to
bring our analyses directly in the IDE, through the Knowledge Base, to deliver the appropriate information to
the developers when it is needed.
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12 Satisfaction of CROSSMINER Requirements

In this section, we present the alignment of the work described in this document with the requirements
of CROSSMINER use cases extracted from D1.1 – Project Requirements. Specifically, we refer to the
requirements listed in Section 17: Consolidated Requirements and Mapping for WP2: Mining Source Code
related to dependency management.

Req.
No.

Requirement Priority Status

D8 Source code mining shall document
every metric, possibly with refer-
ences

SHALL Full: Every dependency-related metric in
the standalone OSGi & Maven analysis
project (https://github.com/crossminer/
osgi-analysis-rascal/). As they will grad-
ually be migrated as metric providers in the
CROSSMINER platform, their documentation
will follow.

D12 Source code mining shall be able
to detect the use of a 3rd-party API
function from the source code of a
project

SHALL Full: Our tool leverages Java bytecode analysis
to infer precisely which parts of a 3rd-party
API are used by dependent projects (cf. D20).

D19 Source code mining shall be able
to detect dependencies between li-
braries/projects (OSGi and Maven)
in the form of a dependency graph,
and discriminate between test/devel-
opment/runtime dependencies

SHALL Full: Our analysis tools can be used to infer
both OSGi and Apache Maven dependencies.
The extracted dependencies are stored as a set
of relations that form a dependency graph and
can easily be queried by metric providers. In
the case of OSGi, it is not possible to distin-
guish between development, test, and runtime
dependencies in Manifest files; one of the rec-
ommended practice in Eclipse is instead to
separate tests in dedicated bundles. We can
correctly infer the scope of a dependency in
the case of Apache Maven.

D20 Source code mining shall be able to
infer dependencies from an analysis
of the code of the open source frame-
work

SHALL Full: Reusing and extending previous results
from the OSSMETER project, our dependency
mining tool automatically infers factual depen-
dencies from the Java bytecode of software
projects. This is notably used to support re-
quirement D21.

D21 Source code mining should be able
to detect superfluous dependencies
and propose a strategy to simplify
the dependency graph

SHOULD Full: Cross-cutting analyses of the handwrit-
ten Manifest/POM files and the factual depen-
dencies required in bytecode allow us to de-
tect superfluous dependencies in OSGi bun-
dles. Our tool pinpoints which dependencies
are superfluous, letting the developer use this
knowledge to refactor her meta-data.
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D22 Source code mining may identify
over constrained dependencies

MAY None: In-depth analysis of source code may
allow us to warn about overly precise depen-
dencies (e.g., regarding version ranges). This
however remains future work, based on previ-
ous results for Java analysis.

D23 The components developed within
the Mining Source Code WP shall in-
teract with the Mining Natural Lan-
guage Sources and Mining System
Configuration whenever applicable
(e.g., when extracting code snippets
from plain-text documentation, or
to make the configuratioon analysis
more accurate based on knowledge
extracted from static source code
analysis)

SHALL Partial: While the components we developed
do not interact directly with the components
from WP3 and WP4 yet, they enable anyone
to write metric providers that can query the re-
sults of dependency analysis. Doing so, it is
possible to write metric providers that cross-
fertilize the results of components developed
within any WP. The Knowledge Base can later
digest the results of different components to
provide actionable knowledge to the develop-
ers.

Table 5: Satisfaction of CROSSMINER requirements extracted
from D1.1 – Project Requirements.
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