
LEXICAL ANALYSIS OF AUTOMATED ACCOUNTS ON 
TWITTER 

Isa Inuwa-Dutse1,  Bello Shehu Bello2 and Ioannis Korkontzelos1 
1Department of Computer Science , Edge Hill University, UK 

2Department of Informatics, University of Leicester, UK 

ABSTRACT 

In recent years, social bots have been using increasingly more sophisticated, challenging detection strategies. While many 
approaches and features have been proposed, social bots evade detection and interact much like humans making it 
difficult to distinguish real human accounts from bot accounts. For detection systems, various features under the broader 
categories of account profile, tweet content, network and temporal pattern have been utilised. The use of tweet content 
features is limited to analysis of basic terms such as URLs, hashtags, name entities and sentiment. Given a set of tweet 
contents with no obvious pattern can we distinguish contents produced by social bots from that of humans? We aim to 
answer this question by analysing the lexical richness of tweets produced by the respective accounts using large 
collections of different datasets. Our results show a clear margin between the two classes in lexical diversity, lexical 
sophistication and distribution of emoticons. We found that the proposed lexical features significantly improve the 
performance of classifying both account types. These features are useful for training a standard machine learning 
classifier for effective detection of social bot accounts. A new dataset is made freely available for further exploration.  
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1. INTRODUCTION 

As a social being, human’s behaviour is largely influenced by close associates. In this era of modern 
civilisation, the Internet has been the precursor of the socialisation being witnessed today. Social networking 
sites are important avenues for instant information sharing and interaction on a large scale (Gilani et al., 
2017; Wilson et al., 2012). Modern social media platforms, such as Twitter and Facebook, enable various 
forms of interactions among diverse users. This capability results in a huge amount of data waiting to be 
mined by researchers. However, the credibility of such content is being questioned by the growing activities 
of automated accounts otherwise known as social bots. Social Bots are automated accounts designed to 
follow a well-defined algorithm to interact with users either by amplifying or generating contents in social 
media platforms (Ferrara et al., 2016). Some social bot accounts are legitimate, with clear distinguishing 
features, such as @congressedits1, whereas the majority are created to mislead in various ways, such as by 
creating superficial popularity (Varol et al., 2017) or influencing public opinion (Howard and Kollanyi, 
2016). Some bots are obvious, because they use the word “bot” explicitly in their Twitter handle (Inuwa-
Dutse et al., 2018). Autonomous accounts contribute a sizeable part of social media content. It was estimated 
that 9% - 15% of active Twitter accounts are social bots accounts (Varol et al., 2017) and require effective 
methods to be detected. 

How could we detect if a given tweet was posted by a social bot or a human user? We investigate this 
question based on a collection of tweets sampled from Twitter. In particular, we investigate how effective 
lexical features are for the detection of social bot accounts. In contrast to previous work (Benevenuto et al., 
2010; Cai t al., 2017; Dockerson et al., 2014; Lee and Kim, 2012; Thomas et al., 2011; Varol et al., 2017; 
Wang, 2010), our study focuses on comprehensive linguistic analysis to define lexical features effective 
enough for accurate detection of social bot accounts on Twitter. As shown in Table 1, the study explores a 

                                                
1 A bot that tweets anonymous Wikipedia edits made from IP addresses in the US Congress. 



large number of tweets from social bots and humans to understand the difference between the two in terms of 
lexical richness and distribution of emoticons, further discussed in section 3. Our analysis highlights the 
distinguishing characteristics of automated accounts and how lexical features can improve detection of bots. 

Contribution: The study contributes a powerful set of features useful in distinguishing between humans 
and social bots on Twitter. We provide the first comprehensive analysis of lexical richness of tweets 
computed on various accounts and investigate how their incorporation improves the performance of the 
detection system. Features based on lexical diversity, type-token ratio, usage of contractions and emoticons 
are powerful lexical signals in distinguishing between humans and social bots. The study provides a new set 
of distinctive features and a dataset to support the research community in identifying bot accounts.  

The remaining of the paper is structured as follows. Section 2 and Section 3 present a review of related 
works and propose lexical features, respectively. Section 4 presents our experiments and Section 5 presents 
the results and a detailed discussion. Finally, Section 6 concludes the study and proposes some future work. 

2. RELATED WORK 

Social bot accounts are instrumental in spreading fake and malicious news on Twitter, employed to skew 
analysis results and opinion of users. The demand for effective detection systems has prompted a surge of 
various research approaches. Early social bot accounts have been reported to lack basic account information 
such as meaningful screen names or profile picture (Varol et al., 2017; Lee et al., 2011). This is no longer the 
case, as social bots grow in sophistication, making it difficult to identify distinguishing features from human 
accounts. Some approaches involve the analysis of accounts as far as their position in a network, their 
temporal metadata and the content of their tweets, to define a new set of features. The following review 
focuses on related studies that utilised aspects of these features to detect bot accounts. 

Network and Temporal Features: The study of Chavoshi et al. (2017) analyses the behavioural patterns of 
accounts by focusing on features related to the network structure, such as local motifs, i.e. repeating 
behaviour, and discords, i.e. anomalous behaviour. The study also shows how temporal behaviour is useful as 
a means to distinguish bot from human user accounts. The work of Davis et al. (2016) and (Ferrara et al. 
(2016) developed a detection system that leverages features related to both network structure and tweeting 
behaviour exhibited by accounts. In [Error! Reference source not found.] researchers utilised many 
features related to network, temporal behaviour, tweet syntax, tweet semantics and user profile for the 
detection of influence bots. Influence bots are categories of social bot accounts that aim at influencing the 
opinion of other users. However, despite the wide spectrum of features considered in the study, analysis of 
the lexical richness was not covered.  

Tweet Content: Many detection systems have been developed by leveraging the content of tweets posted 
by account holders on Twitter. This approach was adopted in Dockerson et al. (2014) to detect social bot 
accounts on Twitter based on sentiment features, such as topic sentiment and the transition frequency of 
tweet’s sentiment, to train a machine learning classifier. Similarly, to the tweet content approach that relies 
on linguistic analysis, Inuwa-Dutse et al. (2018) utilised features based on lexical richness to detect spam 
accounts on Twitter. The study of (Cai t al., 2017) proposed a deep learning approach that incorporates 
content and behavioural information to detect social bots.  

Related literature pays little attention to the analysis of lexical richness of various users’ tweets and how 
they can inform the detection of social bots on Twitter. In contrast to previous work, this study is based on in-
depth analysis of lexical richness as a basis for building a detection system. We present an approach solely 
based on lexical analysis of contents from both humans and social bots accounts to distinguish between them. 

3. LEXICAL RICHNESS FEATURES 

This section describes the lexical features utilised in the study, able to improve detection systems. Lexical 
richness is a broad concept, expressed in various forms and metrics to assess the quality of text. Metrics such 
as lexical diversity, lexical sophistication and lexical density are commonly used in linguistic analysis 
(Šišková, 2012; Templin, 1957). Our approach is based on lexical richness of tweets from various Twitter 
accounts to detect social bots. 



3.1 Type-Token Ratio 

Type-Token Ratio (TTR) is a simple, yet powerful metric used commonly in quantitative linguistics to 
measure the richness of vocabulary in a given context (Tweedie and Baayen, 1998). TTR can be expressed as 
V(N)/N, i.e. the size of vocabulary in N divided by the total size of N. In the context of this study, TTR is the 
ratio of unique tokens in a tweet to the total number of tokens in the tweet. It can be argued that computing 
TTR over all tweets of an account may lead to a better result. However, the small size of individual tweets 
may skew the result due to the sparsity of unique tokens relative to the total number of tokens. 

3.2 Lexical Diversity 

Lexical Diversity is an important metric in the analysis of lexical richness. It is useful in assessing the 
distribution of different content words2 utilised in a textual corpus or in speech (Tweedie and Baayen, 1998). 
Lexical sophistication is similar to lexical diversity and focuses on understanding the distribution of 
advanced words. This study focuses on lexical diversity. The rationale behind using it as a feature is to assess 
its levels in bot and human accounts and its predictive power in detection of social bot accounts. While the 
contents produced by social bots were shown to be different across various social bots (Morstatter et al., 
2016), they tend to exhibit similarities in terms of widespread use of URLs. In view of this, we computed 
lexical diversity as the total number of tokens in a tweet without URLs, user mentions and stopwords divided 
by the total number of tokens in the tweet. 

3.3 Usage of Contractions 

Text or speech in English can be shortened by ignoring some letters or phonetics. These kinds of contracted 
words are a form of lexical sophistication, useful to measure the fluency of users. Various forms of 
contracted words are widespread on Twitter. However, we focus on a predefined list of contractions3 for our 
analysis. The expectation is for human users to use diverse contractions, while it would be difficult for a bot 
to use contraction unless generating its tweet from pre-existing sources, e.g. a book or a structured document.  

3.4 Emoticons 

Emoticons4 are collections of pictorial representations of facial expressions or emojis in form of various 
characters (letters, punctuation, and numbers) to convey emotional mood. Emoticons are popular on social 
media, especially on Twitter, where tweets are of limited length, are useful indicators or users’ sentiment. 
Common examples of emoticons are the smiley, :-), and the sad face, :-(. Sentiment-related features have 
been shown to contribute in detection systems (Dockerson et al., 2014). We leverage this to understand the 
role of emoticons in detection of bot accounts using a comprehensive list of emoticons5. The goal is to 
understand how human and social bot users apply emoticons in tweets and utilise the insight to build 
classification models. We hypothesise human users will use emoticons in a larger proportion in comparison 
to social bots accounts. 

4. EXPERIMENT 

This section describes the datasets utilised in this study, including the collection procedure and  
pre-processing. This is followed by feature selection and building the classification framework. 

4.1 Dataset 
                                                
2 Words with meaning in a text; not in stopwords. 
3 Wikipedia list of contractions: en.wikipedia.org/wiki/Wikipedia:List_of_English_contractions   
4 A portmanteau of emotion and icon. 
5 Available from: en.wikipedia.org/wiki/Emoticon 



We utilized three different datasets. The first two are publicly available, Dataset1 is obtained from 
(Morstatter et al., 2016) and Dataset2 from (Gilani et al., 2017. The last dataset is collected for the purpose of 
this study. Table 1 summarises the datasets. Dataset2 is classified under five different groups based on 
popularity and volume of contents generated by the accounts. We maintain the groupings in the study and 
analyse the lexical richness in each group to understand how the lexical richness will vary across the different 
groups. The two datasets contain some non-English accounts, which were removed to facilitate proper lexical 
analysis of tweets. Dataset1 provides only account ids and Dataset2 provides screen-names and account 
features. We used the Twitter API to crawl tweets from each account. Our analysis experience with Dataset1 
and Dataset2 reveals that most of the bot accounts are suspended and many accounts are not in English. In 
order to ensure genuine representation both from humans and bots accounts, we collected an additional 
dataset as follows. 

Human accounts: We collected human user accounts who directly engage with the Twitter handles of 
organisations such as university and have correspondences in terms of replies to the users’ queries. This is a 
useful technique to discount for bot accounts since bots may find it difficult to engage in meaningful 
conversations. To the best of our knowledge, this is the first study to employ this approach to ensure the 
genuineness of human users. For the social bots accounts, we collected 500 bot accounts using a publicly 
available bot detection system known as Botometer6 (Davis et al., 2016). The Botometer returns a probable 
bot account which may result in many false positives. To mitigate that, we manually annotated the results of 
Botometer. The annotators scanned through the accounts and labelled account as bot based on the following 
criteria: (1) the account should be active, not suspended or deleted and posting tweets in English only (2) if 
the account’s screen name appears to be auto-generated e.g. 2jo120, 2jo24 and 37Hkyjdtytyhjgh (3) if the 
profile picture of the account shows no obvious relationship with the account’s posts e.g. account tweeting on 
Brexit but with storm-trooper profile picture (4) number of URLs or hashtags: if the tweets mostly consist of 
URLs or hashtags exceeding 70% of the content (5) activity interval: posting at least 15 tweets per minute. 

The annotation process is quite laborious which explain why the small size in Dataset3. We are not 
particularly interested in collecting a very high number of accounts but a high number of tweets from real 
human and bot accounts. We used the Twitter API to collect a maximum of 1000 tweets from each account. 

Table 1. Summary of datasets utilised in the study. Dataset2 is categorised in groups based on the number of the 
followers in each group (k and m denote thousand and million respectively) 

Category Bot Accounts Human Accounts Bot Tweets Human Tweets 

 Dataset1 685 641 27,766 5,341 

 Dataset2 1k 75 76 22,432 116,576 

 Dataset2 100k 266 343 112,387 98,271 

 Dataset2 1m 137 184 45,605 53,700 

 Dataset2 10m 25 25 9,062 11,869 

 Dataset3 100 100 83,976 74,483 

4.2 Classification of Account as Bot or Human Using Lexical Features 

We use machine learning to measure the extent at which these features aid in identifying bot accounts. We 
train a number of classifiers, namely K-nearest neighbour (KNN), Naive Bayes, Support Vector machine for 
Classification (SVC) and Random Forest on the three datasets. As shown in Table 3, three experiments were 
conducted for Dataset2: (1) using our lexical features, denoted as L, (2) using the features in Table 2 from 
(Gilani et al., 2017), denoted as F, and (3) a combination of (1) and (2), denoted as FL. The proposed lexical 
features (L) in this study are TTR, lexical diversity, average number contractions and emoticons.  

The classifiers were built and trained using scikit-learn7 (Pedregosa et al., 2011), a machine learning 
toolkit supported by Google and INRIA8. Stratified 10-fold cross-validation was used to measure the overall 
                                                
6 botometer.iuni.iu.edu/#!/api 
7 scikit-learn.org/stable 
8 inria.fr/en 



accuracy, precision, recall and roc-auc score of each classifier. The Random Forest classifier performs best 
as shown in Table 4. 

Table 2. Features used in Dataset2 

Features 
 Age of account, Favourites-to-tweets ratio, Lists per user, Followers-to-friends ratio, User favourites, Likes/favourites per 
tweet, Retweets per tweet, User replies, User tweets, User retweets, Tweet frequency, URLs count, Activity source type[S1= 
browser, S2= mobile apps, S3= OSN management, S4= automation, S5= marketing, S6=news content, S0= all other], Source 
count, CDN content size 

Table 3. Datasets and respective description of features utilised in training the prediction model 

Dataset Description 
 Dataset2_F features in Table 2 

  Dataset2_FL features from in Table 2 and our proposed lexical features (L) 
 Dataset2_L proposed lexical features (L) 
 Dataset3_L proposed lexical features on Dataset3 

 

5. RESULTS AND DISCUSSION 

The following section presents the main findings of the study. Figure 1 shows empirical evidence that the 
proposed lexical features are among the important features for the identification of automated accounts. 
Similarly, Figures 2, 3 and 4 show how lexical features manifest in humans and bot accounts.  

 
Figure 1. A comparison of importance of the proposed lexical features and features utilised in a related study 

Lexical Diversity: Figure 2 shows the results of computing lexical diversity in human and bot accounts. 
Lexical diversity is expected to be higher in humans, since humans have been shown to generate better and 
novel content on Twitter (Gilani et al., 2017). However, this is not entirely true, especially in some automated 
accounts by prominent organisations, as shown in Figure 2. Accounts with a higher number of followers 
under the bot category are shown to have higher lexical diversities than the corresponding human 
counterparts. This is probably because such accounts are managed to update a large number of users on 
various topics on regular basis. Accounts in this category include organisational accounts, such as the BBC, 
politicians or popular celebrities. However, in Dataset3, humans have higher lexical densities which can be 
linked to the approach that was employed for the data collection. The dataset is a representative of an average 
user on Twitter. This confirms our earlier intuition that a typical human user account is expected to have a 
higher lexical diversity. 

Usage of Contractions: Figure 3 shows how the usage of contraction varies across the datasets. With the 
exception of Dataset3, the difference in the use of contracted words between humans and bots is not very 
significant. This can be due to the fact that users with many followers on Twitter, such as organisational 
accounts or politicians, tend to use contracted words in tweets. With the exception of Dataset3, the difference 
in the use of contracted words between humans and bots is not very significant. This can be attributed to the 



fact that users with a high number of followership on Twitter will tend to use contracted words, e.g. 
(Dataset2 1M and Dataset2 10M), which mainly contain tweets of organisations, celebrities or politicians. 

Usage of Emoticons: We found that the usage of emoticons is higher in bot accounts than in human 
accounts across all the different datasets as shown in Figure 4. Surprisingly, the results suggest that bot 
accounts utilise more emoticons in their tweets than humans. This is contrary to our prior intuition that 
humans are more likely to use more emoticons. 

 

 
Figure 2. Average lexical diversities of human and social bot accounts 

 
Figure 3. Average Contractions across datasets utilised in this study 

Classification of bot and human accounts using lexical features: We use machine learning algorithms to 
measure the extent at which our proposed lexical features aid detection of bot accounts. Table 4 shows the 
results of a trained random forest classifier across the datasets. Using the lexical features only we achieve an 
accuracy of 86% and AUC score of 87% in Dataset_3. In Dataset2_FL we achieve an AUC score of 95% 
which is a significant improvement over 71% achieved using only the features utilised in (Gilani et al., 2017). 

The primary goal is to improve detection of bot accounts by adding lexical features into the detection 
system. Emoticons happen to be the most distinctive features between humans and bots. In Figure 4 we 
observe an agreement in the usage of emoticons in all the datasets, i.e. bots use emoticons more frequently 
than humans. It is evident from the classification result (Table 4) that lexical features significantly improve 
the performance of the detection system. The distinguishing power of lexical features appears to be less 



effective in Dataset1 and Datatset2 in relation to Dataset3. With extra measures during data collection and 
annotation, this effect can be mitigated. This is evident from Dataset3 which was manually inspected, and 
emphasis should be placed in the collection of more robust and representative datasets for effective detection. 
Despite the variations, which we attribute to many false positives in Dataset1 and Datatset2, lexical features 
prove to be strong indicators as shown in Figure 1. The figure shows that emoticons (captioned as 
avg_emojicons) is the second most important feature among the 18 features. The lowest performing of our 
proposed lexical features (avg_contraction) outperforms 6 features utilised in a related study. 

 

 
Figure 4. Average emoticons in the different datasets 

Table 4. Datasets and respective prediction performances  

  Dataset  Accuracy Precision  Recall AUC Score 
     
 Dataset1_L 0.65 0.65 0.65 0.65 
 Dateset2_F 0.71 0.72 0.72 0.71 
 Dateset2_L 0.66 0.67 0.67 0.66 
 Dataset2_FL 0.95 0.96 0.96 0.95 
 Dataset3_L 0.86 0.87  0.87 0.87 

6. CONCLUSION 

Modern day social platforms have become part of our lives and effective social policing is required to ensure 
data credibility and civilised way of interaction. However, with the growing sophistication level of social 
bots, it is proving difficult to sanitise social platforms. The continuous increase in real-time streaming of 
tweets makes it practically ineffective to rely on many account features for detection. To effectively 
distinguish between a bots and a human user, an analysis of lexical richness of tweets posted by both users 
provides additional distinctive features. We train diverse classifiers to evaluate the role of lexical features in 
the detection of bot accounts. The newly proposed features significantly improve detection accuracy.  

In this study, we have shown the difference between humans and bots in terms of lexical diversity, usage 
of contraction and emoticons, based on three different datasets. Lexical diversity and contractions vary across 
the different datasets. Contrary to our intuition, social bots accounts utilise a large number of emoticons in 
comparison to human accounts. We consider only English tweets as we do not focus on how lexical features 
are applied to other languages. Further investigation on this will improve the universality of our approach. 
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