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Abstract
Asynchrony has become an inherent element of JavaScript, as an effort to improve the scalability
and performance of modern web applications. To this end, JavaScript provides programmers
with a wide range of constructs and features for developing code that performs asynchronous
computations, including but not limited to timers, promises, and non-blocking I/O.

However, the data flow imposed by asynchrony is implicit, and not always well-understood
by the developers who introduce many asynchrony-related bugs to their programs. Worse, there
are few tools and techniques available for analyzing and reasoning about such asynchronous
applications. In this work, we address this issue by designing and implementing one of the
first static analysis schemes capable of dealing with almost all the asynchronous primitives of
JavaScript up to the 7th edition of the ECMAScript specification.

Specifically, we introduce the callback graph, a representation for capturing data flow between
asynchronous code. We exploit the callback graph for designing a more precise analysis that
respects the execution order between different asynchronous functions. We parameterize our
analysis with one novel context-sensitivity flavor, and we end up with multiple analysis variations
for building callback graph.

We performed a number of experiments on a set of hand-written and real-world JavaScript
programs. Our results show that our analysis can be applied to medium-sized programs achiev-
ing 79% precision on average. The findings further suggest that analysis sensitivity is beneficial
for the vast majority of the benchmarks. Specifically, it is able to improve precision by up
to 28.5%, while it achieves an 88% precision on average without highly sacrificing performance.

2012 ACM Subject Classification Theory of computation → Program analysis, Software and
its engineering → Semantics

Keywords and phrases static analysis, asynchrony, JavaScript

1 Introduction

JavaScript is an integral part of web development. Since its initial release in 1995, it has
evolved from a simple scripting language—primarily used for interacting with web pages—into
a complex and general-purpose programming language used for developing both client- and
server-side applications. The emergence of Web 2.0 along with the dynamic features of
JavaScript, which facilitate a flexible and rapid development, have led to a dramatic increase
in its popularity. Indeed, according to the annual statistics provided by Github, which is the
leading platform for hosting open-source software, JavaScript is by far the most popular and
active programming language from 2014 to 2018 [13].

Although the dominance of JavaScript is impressive, the community has widely criticized
it because it poses many concerns as to the security or correctness of the programs [35].
JavaScript is a language with a lot of dynamic and metaprogramming features, including but
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not limited to prototype-based inheritance, dynamic property lookups, implicit type coercions,
dynamic code loading, etc. Many developers often do not understand or do not properly
use these features, introducing errors to their programs—which are difficult to debug—or
baleful security vulnerabilities. In this context, JavaScript has attracted many engineers and
researchers over the past decade to 1) study and reason about its peculiar characteristics,
and 2) develop new tools and techniques—such as type analyzers [18, 22, 20], IDE and
refactoring tools [5, 6, 7, 10], or bug and vulnerability detectors [28, 14, 33, 30, 4, 36]—to
assist developers with the development and maintenance of their applications. Program
analysis, and especially static analysis, which automatically computes facts about program’s
behavior without actually running it, plays a crucial role in the design of such tools [37].

Additionally, preserving the scalability of modern web applications has become more
critical than ever. As an effort to improve the throughput of web programs, JavaScript
has started to adopt an event-driven programming paradigm [3]. In this context, a code
is executed asynchronously in response to certain events, e.g., user input, a response from
a server, data read from disk, etc. In the first years of JavaScript, someone could come
across that asynchrony mainly in a browser environment e.g., DOM events, AJAX calls,
timers, etc. However, in recent years, asynchrony has become a salient and intrinsic element
of the language, as newer versions of the language’s core specification (i.e., ECMAScript)
have introduced more and more asynchrony-related features. For example, ECMAScript 6
introduces promises; an essential element of asynchronous programming that allows developers
to track the state of an asynchronous computation easily. Specifically, the state of a promise
object can be one of:

fulfilled: the associated operation is complete, and the promise object tracks its resulting
value.
rejected: the associated operation failed, and the promise object tracks its erroneous
value.
pending: the associated operation has been neither completed nor failed.

Promises are particularly useful for asynchronous programming because they provide an
intuitive way for creating chains of asynchronous computation, facilitating the enforcement
of execution order as well as error propagation [11, 10]. To do that, promises trigger the
execution of certain functions (i.e., callbacks) depending on their state, e.g., callbacks that
are executed once a promise is fulfilled or rejected. For that reason, the API of promises
provides the method x.then(f1, f2) for registering new callbacks (i.e., f1 and f2) on a
promise object x. For example, we call the callback f1 when the promise is fulfilled, while
we trigger the callback f2 once the promise is rejected. The method x.then() returns a new
promise which the return value of the provided callbacks (i.e., f1, f2) fulfills. Since their
initial introduction to the language, JavaScript developers have widely embraced promises; a
study in 2015 showed that 75% of JavaScript frameworks use promises [11].

Building upon promises, newer versions of ECMAScript have added new language features
related to asynchrony. Specifically, in ECMAScript 8, we have the async/await keywords.
The async keyword declares a function as asynchronous which returns a promise fulfilled
with its return value, while await x defers the execution of the asynchronous function in
which is placed, until the promise object x is settled (i.e., it is either fulfilled or rejected). The
latest edition of ECMAScript (ECMAScript 9) adds asynchronous iterators and generators
that allow developers to iterate over asynchronous data sources.

Beyond promises, many JavaScript applications are written to perform non-blocking I/O
operations. Unlike traditional statements, when we perform a non-blocking I/O operation,
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1 asyncRequest(url , options)
2 .then(function (response) {
3 honoka.response = response.clone ();
4
5 switch (options.dataType.toLowerCase ()) {
6 case "arraybuffer":
7 return honoka.response.arrayBuffer ();
8 case "json":
9 return honoka.response.json ();

10 ...
11 default:
12 return honoka.response.text ();
13 }
14 })
15 .then(function (responseData) {
16 if (options.dataType === "" || options.dataType === "auto") {
17 const contentType = honoka.response.headers.get("Content -Type");
18 if (contentType && contentType.match("/application \/json/i")) {
19 responseData = JSON.parse(responseData);
20 }
21 }
22 ...
23 });

Figure 1 Real-world example that mixes promises with asynchronous I/O.

the execution is not interrupted until that operation terminates. For instance, a file system
operation is done asynchronously, which means that the execution proceeds to the next tasks
while I/O takes place. Programmers often mix asynchronous I/O with promises. For instance,
consider the real-world example of Figure 1. At line 1, the code performs an asynchronous
request and returns a promise object which is fulfilled asynchronously once the request
succeeds. Then that promise object can be used for processing the response of the server
asynchronously. For instance, at lines 2–23, we create a promise chain. The first callback
of this chain (lines 2–14) clones the response of the request, and assigns it to the property
response of the object honoka (line 3). Then, it parses the body of the response according
to its type and fulfills the promise object allocated by the first invocation of then(). The
second callback (lines 15–23) retrieves the headers of the response—which the statement at
line 3 assigns to honoka.response—and if the content type is “application/json”, it converts
the data of the response into a JSON object (lines 17–19).

Like the other characteristics of JavaScript, programmers do not always clearly understand
asynchrony, as a large number of asynchrony-related questions issued in popular sites like
stackoverflow.com1 [26, 25], or the number of bugs reported in open-source repositories [38,
4] indicate. However, existing tools and techniques have limited (and in many cases no)
support for asynchronous programs. In particular, existing tools mainly focus on the event
system of client-side JavaScript applications [17, 32], and they lack the support of the more
recent features added to the language like promises. Also, many previous works conservatively
considered that all asynchronous callbacks processed by the event loop—the program point
which continuously waits for new events to come and is responsible for the scheduling and
execution of callbacks—can be called in any order [17, 32, 20]. However, such an approach
may lead to imprecision and false positives. Back to the example of Figure 1, it is easy to
see that an analysis, which does not respect the execution order between the first and the

1 https://stackoverflow.com/

https://stackoverflow.com/
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second callback, will report a type error at line 17 (access of honoka.response.headers.get
(" Content - Type ")). Specifically, an imprecise analysis assumes that the callback defined
at lines 15–23 might be executed first; therefore, honoka.response, assigned at line 3, might
be uninitialized.

In this work, we tackle those issues, by designing and implementing a static analysis that
deals with asynchronous JavaScript programs. For that purpose, we first define a model for
understanding and expressing a wide range of JavaScript’s asynchronous constructs, and then
we design a static analysis based on that. We propose a new representation, which we call
callback graph, which provides information about the execution order of the asynchronous
code. The callback graph proposed in this work tries to shed light on how data flow between
asynchronous code is propagated. Contrary to previous works, we leverage the callback
graph and devise a more precise analysis which respects the execution order of asynchronous
functions. Furthermore, we parameterize our analysis with one novel context-sensitivity
strategy designed for asynchronous code. Specifically, we distinguish data flow between
asynchronous callbacks based on the promise object on which they have registered or the
next computation to which execution proceeds.
Contributions: Our work makes the following four contributions:

We propose a calculus, i.e., λq, for modeling the asynchronous features in the JavaScript
language, including timers, promises, and asynchronous I/O operations. Our calculus is
a variation of existing calculi [24, 25], and provides constructs and domains specifically
targeted for our analysis (§2).
We design and implement a static analysis that is capable of handling asynchronous
JavaScript programs by exploiting the abstract version of λq. To the best of our knowledge,
our analysis is the first to deal with JavaScript promises (§3.1).
We propose the callback graph, a representation which illustrates the execution order
between asynchronous functions. Building on that, we propose a more precise analysis,
(i.e., callback-sensitive analysis) which internally consults the callback graph to retrieve
information about the temporal relations of asynchronous functions so that it propagates
data flow accordingly. Besides that, we parameterize our analysis with a novel context-
sensitivity flavor (i.e., QR-sensitivity) used for distinguishing asynchronous callbacks.
(§3.2, §3.3).
We evaluate the performance and precision of our analysis on a set of micro benchmarks
and a set of real-world JavaScript modules. For the impatient reader, we find that our
prototype is able to analyze medium-sized asynchronous programs, and the analysis
sensitivity is beneficial for improving the analysis precision. The results showed that
our analysis is able to achieve a 79% precision for the callback graph, on average. The
analysis sensitivity (i.e. callback- and QR-sensitivity) can further improve callback graph
precision by up to 28.5% and reduce the total number of type errors by 16,7% as observed
in the real-world benchmarks (§4).

2 Modeling Asynchrony

As a starting point, we need to define a model to express asynchrony. The goal of this model
is to provide us with the foundations for gaining a better understanding of the asynchronous
primitives and ease the design of a static analysis for asynchronous JavaScript programs.
This model is expressed through a calculus called λq; an extension of λjs which is the core
calculus for JavaScript developed by [15]. The λq calculus is designed to be flexible so that
it can model various sources of asynchrony found in the language up to the 7th edition
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〈v ∈ V al〉 ::= ...
| ⊥

〈e ∈ Exp〉 ::= ...
| newQ()
| e.fulfill(e)
| e.reject(e)
| e.registerFul(e, e, . . . )
| e.registerRej(e, e, . . . )
| append(e)
| pop()
| •

〈E〉 ::= ...
| E.fullfill(e) | v.fulfill(E)
| E.reject(e) | v.reject(E)
| E.registerFul(e, e, . . . ) | v.registerFul(v, . . . , E, e, . . . )
| E.registerRej(e, e, . . . ) | v.registerRej(v, . . . , E, e, . . . )
| append(E)

Figure 2 Syntax of λq.

of ECMAScript. (i.e., promises, timers, asynchronous I/O). However, it does not handle
the async/await keywords and the asynchronous iterators/generators introduced in recent
editions of the specification.

2.1 The λq calculus
The key component of our model is queue objects. Queue objects are closely related to
JavaScript promises. Specifically, a queue object—like a promise—tracks the state of an
asynchronous job, and it can be in one of the following states: 1) pending, 2) fulfilled or
3) rejected. A queue object may trigger the execution of callbacks depending on its state.
Initially, a queue object is pending. A pending queue object can transition to a fulfilled or a
rejected queue object. A queue object might be fulfilled or rejected with a provided value
which is later passed as an argument in the execution of its callbacks. Once a queue object
is either fulfilled or rejected, its state is final and cannot be changed. We keep the same
terminology as promises, so if a queue object is either fulfilled or rejected, we call it settled.

2.1.1 Syntax and Domains
Figure 2 illustrates the syntax of λq. For brevity, we present only the new constructs added
to the language. Specifically, we add eight new expressions:

newQ(): This expression creates a fresh pending queue object with no callbacks associated
with it.
e1.fulfill(e2): This expression fulfills the receiver (i.e., the expression e1) with the value
of e2.
e1.reject(e2): This expression rejects the receiver (i.e., the expression e1) with the value
of e2.
e1.registerFul(e2, e3, . . . ): This expression registers the callback e2 to the receiver. This
callback is executed only when the receiver is fulfilled. This expression also expects
another queue object passed as the second argument, i.e., e3. This queue object will
be fulfilled with the return value of the callback e2. This allows us to model chains of
promises where a promise resolves with the return value of another promise’s callback.
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a ∈ Addr = {li | i ∈ Z∗} ∪ {ltime, lio}
π ∈ Queue = Addr ↪→ QueueObject

q ∈ QueueObject = QueueState× Callback∗ × Callback∗ ×Addr
s ∈ QueueState = {pending} ∪ ({fulfilled, rejected} × V al)
clb ∈ Callback = Addr × F × V al∗

κ ∈ ScheduledCallbacks = Callback∗

κ ∈ ScheduledT imerIO = Callback∗

φ ∈ QueueChain = Addr∗

Figure 3 Concrete domains of λq.

This expression can also receive optional parameters (i.e., expressed through “. . . ”) with
which e2 is called if the queue object is fulfilled with ⊥ value. We will justify later the
intuition behind that.
e1.registerRej(e2, e3, . . . ): The same as e.registerFul(. . . ) but this time the given
callback is executed once the receiver is rejected.
append(e): This expression appends the queue object e to the top of the current queue
chain. As we shall see later, the top element of a queue chain corresponds to the queue
object that is needed to be rejected if the execution encounters an uncaught exception.
pop(): This expression pops the top element of the current queue chain.
The last expression • stands for the event loop.

Observe that we use evaluation contexts [8, 15, 26, 24, 25] to express how the evaluation
of an expression proceeds. The symbol E denotes which sub-expression is currently being
evaluated. For instance, E.fulfill(e) describes that we evaluate the receiver of fulfill,
whereas v.fulfill(E) implies that the receiver has been evaluated to a value v, and the
evaluation now lies on the argument of fulfill. Beyond those expressions, the λq calculus
introduces a new value, that is, ⊥. This value differs from null and undefined because it
expresses the absence of value and it does not correspond to any JavaScript value.

Figure 3 presents the domains introduced in the semantics of λq. In particular, a queue
is a partial map of addresses to queue objects. The symbol li—where i is a positive integer—
indicates an address. Notice that the set of the addresses also includes two special reserved
addresses, i.e., ltime, lio. We use these two addresses to store the queue objects responsible for
keeping the state of callbacks related to timers and asynchronous I/O respectively (Section 2.2
explains how we model those JavaScript features). A queue object is described by its state—
recall that a queue object is either pending or fulfilled and rejected with a value—a sequence
of callbacks executed on fulfillment, and a sequence of callbacks called on rejection. The last
element of a queue object is an address which corresponds to another queue object which
is dependent on the current, i.e., it is settled whenever the current queue object is settled,
and with the same state. We create such dependencies when we settle a queue object with
another queue object. In this case, the receiver is dependent on the queue object used as an
argument.

Moving to the domains of callbacks, we see that a callback consists of an address, a
function, and a list of values (i.e., arguments of the function). Note that the first component
denotes the address of the queue object which the return value of the function is going to fulfill.
In the list of callbacks κ ∈ ScheduledCallbacks, we keep the order in which callbacks are
scheduled. Note that we maintain one more list of callbacks (i.e., τ ∈ ScheduledT imerIO)
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where we store the callbacks registered on the queue objects located at the addresses ltime, lio.
We defer the discussion about why we keep two separate lists until Section 2.1.3.

A queue chain φ ∈ QueueChain is a sequence of addresses. In a queue chain, we store
the queue object that we reject, if there is an uncaught exception in the current execution.
Specifically, when we encounter an uncaught exception, we inspect the top element of the
queue chain, and we reject it. If the queue chain is empty, we propagate the exception to the
call stack as usual.

2.1.2 Semantics
Equipped with the appropriate definitions of the syntax and domains, in Figure 4, we present
the small-step semantics of λq which is an adaptation of [24, 25]. Note that we demonstrate
the most representative rules of our semantics; we omit some rules for brevity. For what
follows, the binary operation denoted by the symbol · means the addition of an element to a
list, the operation indicated by :: stands for list concatenation, while ↓i means the projection
of the ith element.

The rules of our semantics adopt the following form:

π, φ, κ, τ, E[e]→ π′, φ′, κ′, τ ′, E[e′]

That form expresses that a given queue π, a queue chain φ, two sequences of callbacks κ and
τ , and an expression e in the evaluation context E lead to a new queue π′, a new queue chain
φ′, two new sequences of callbacks κ′ and τ ′, and a new expression e′ in the same evaluation
context E, assuming that the expression e is reduced to e′ (i.e., e ↪→ e′). The [e-context]

rule describes this behavior.
The [newQ] rule creates a new queue object and adds it to the queue using a fresh address.

This new queue object is pending, and it does not have any callbacks related to it.
The [fulfill-pending] rule demonstrates the case when we fulfill a pending queue object

with the value v, where v 6= ⊥ and does not correspond to any queue object. In particular,
we first change the state of the receiver object from “pending” to “fulfilled”. In turn, we
update the already registered callbacks (if any) by setting the value v as the only argument
of them. Then, we add the updated callbacks to the list of scheduled callbacks κ (assuming
that the receiver is neither ltime nor lio). Also, observe that the initial expression is reduced
to l.fulfill(v), that is, if there is a dependent queue object l, we also fulfill that queue
object with the same value v.

The [fulfill-pend-pend] describes the scenario of fulfilling a pending queue object p
with another pending queue object v. In this case, we update the queue π by making the
queue object p to be dependent on v. This means that we settle p whenever we settle v and
in the same way. Notice that both p and v remain pending.

The [fulfill-pend-ful] rule demonstrates the case when we try to fulfill a pending
queue object p with the fulfilled queue object v. Then, p resolves with the value with which
v is fulfilled. This is expressed by the resulting expression p.fulfill(v′).

The [fulfill-pending-⊥] rule captures the case when we fulfill a queue object with a
⊥ value. This rule is the same with the [fulfill-pending] rule, however, this time we do
not update the arguments of any callbacks registered on the queue object p.

The [fulfill-settled] rule illustrates the case when we try to fulfill a settled queue
object. Notice that this rule neither affects the queue π nor the lists of scheduled callbacks κ
and τ .

The [registerFul-pending] rule adds the provided callback f to the list of callbacks
that we should execute once the queue object p is fulfilled. Note that this rule also associates
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e ↪→ e′

π, φ, κ, τ, E[e]→ π′, φ′, κ′, τ ′, E[e′]
[e-context]

fresh α π′ = π[α 7→ (pending, [], [], ⊥)]
π, φ, κ, τ, E[newQ()]→ π′, φ, κ, τ, E[α]

[newQ]

v 6= ⊥ (pending, t, k, l) = π(p) v 6∈ dom(π) t′ = 〈(α, f, [v], r) | (α, f, a, r) ∈ t〉
κ′ = κ :: t′ χ = (fulfilled, v) π′ = π[p 7→ (χ, [], [], l)] p 6= ltime ∧ p 6= lio

π, φ, κ, τ, E[p.fulfill(v)]→ π′, φ, κ′, τ, E[l.fulfill(v)]
[fulfill-pending]

(pending, t, k, l) = π(p) v ∈ dom(π)
p(v) = (pending, t′, k′,⊥) π′ = π[v 7→ (pending, t′, k′, p)]

π, φ, κ, τ, E[p.fulfill(v)]→ π′, φ, κ, τ, E[undef]
[fulfill-pend-pend]

(pending, t, k, l) = π(p) v ∈ dom(π) p(v) = ((fulfilled, v′), t′, k′,m)
π, φ, κ, τ, E[p.fulfill(v)]→ π, φ, κ, τ, E[p.fulfill(v′)]

[fulfill-pend-ful]

v = ⊥ (pending, t, k, l) = π(p) κ′ = κ :: t
χ = (fulfilled, v) π′ = π[p 7→ (χ, [], [], l)]

π, φ, κ, τ, E[p.fulfill(v)]→ π′, φ, κ′, τ, E[l.fulfill(v)]
[fulfill-pending-⊥]

π(p) ↓1 6= pending

π, φ , κ, τ, E[p.fulfill(v)]→ π, φ, κ, τ, E[undef]
[fulfill-settled]

(pending , t , k, l) = π(p) t′ = t · (p′, f, [n1, n2, . . . , nn], r)
π′ = π[p 7→ (pending, t′, k, l)]

π, φ, κ, τ, E[p.registerFul(f, p′, r, n1, n2, . . . , nn)]→ π,′ φ, κ, τ, E[undef]
[registerFul-pending]

p 6= ltime ∧ p 6= lio (s, t , k , χ) = π(p) s ↓1= fulfilled
s ↓2 6= ⊥ κ′ = κ · (p′, f, [s ↓2], r)

π, φ, κ, τ, E[p.registerFul(f, p′, r, n1, n2, . . . , nn)]→ π,′ φ, κ′, τ, E[undef]
[registerFul-fulfilled]

p 6= ltime ∧ p 6= lio (s, t , k , χ) = π(p) s ↓1= fulfilled
s ↓2= ⊥ κ′ = κ · (p′, f, [n1, n2, . . . , nn], r)

π, φ, κ, τ, E[p.registerFul(f, p′, r, n1, n2, . . . , nn)]→ π,′ φ, κ′, τ, E[undef]
[registerFul-fulfilled-⊥]

p = ltime ∨ p = lio (s, t , k , χ) = π(p) s ↓1= fulfilled
s ↓2= ⊥ τ ′ = τ · (p′, f, [n1, n2, . . . , nn], r)

π, φ, κ, τ, E[p.registerFul(f, p′, r, n1, n2, . . . , nn)]→ π,′ φ, κ, τ ′, E[undef]
[registerFul-timer-io-⊥]

p ∈ dom(π) φ′ = p · φ
π, φ, κ, τ, E[append(p)]→ π, φ′, κ, τ, E[undef]

[append]

π, p · φ, κ, τ, E[pop()]→ π, φ, κ, τ, E[undef]
[pop]

φ = p · φ′

π, φ, κ, τ, E[err v]→ π, φ′, κ, τ, E[p.reject(v)]
[error]

Figure 4 The semantics of λq
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κ = (q, f, a) · κ′ φ = [] φ′ = q · φ
π , φ, κ, τ, E[•]→ π, φ′, κ′, τ, q.fulfill(E[f(a)]); pop(); •

[event-loop]

pick (q, f, a) from τ τ ′ = 〈ρ | ∀ρ ∈ τ. ρ 6= (q, f, a)〉
φ = [] φ′ = q · φ

π , φ, [], E[•]→ π, φ′, [], τ ′, q.fulfill(E[f(a)]); pop(); •
[event-loop-timers-io]

Figure 5 The semantics of the event loop.

this callback with the queue object p′ given as the second argument. That queue object p′
is fulfilled upon the termination of f . Also, this rule adds any extra arguments passed in
registerFul as arguments of f .

The [registerFul-fulfilled] rule adds the given callback f to the list κ (assuming
that the receiver is neither ltime nor lio). We use the fulfilled value of the receiver as the
only argument of the given function. Like the previous rule, it relates the provided queue
object p′ with the execution of the callback. This time we do ignore any extra arguments
passed in registerFul, as we fulfill the queue object p with a value that is not ⊥.

The [registerFul-fulfilled-⊥] rule describes the case where we register a callback f
on a queue object fulfilled with a ⊥ value. Unlike the [registerFul-fulfilled] rule, this
rule does not neglect any extra arguments passed in registerFul. In particular, it sets those
arguments as parameters of the given callback. This distinction allows us to pass arguments
explicitly to a callback. Most notably, these arguments are not dependent on the value with
which a queue object is fulfilled or rejected.

The [registerFul-timer-io-⊥] rule is the same as the previous one, but this time we
deal with queue objects located either at ltime or at lio. Thus, we add the given callback f
to the list τ instead of κ.

The [append] rule appends the element p to the front of the current queue chain. Note
that this rule requires the element p to be a queue object (i.e., p ∈ dom(π)). On the other
hand, the [pop] rule removes the top element of the queue chain.

The [error] rule demonstrates the case when we encounter an uncaught exception, and
the queue chain is not empty. In that case, we do not propagate the exception to the caller,
but we pop the queue chain and get the top element. In turn, we reject the queue object p
specified in that top element. In this way, we capture the actual behavior of the uncaught
exceptions triggered during the execution of an asynchronous callback.

2.1.3 Modeling the Event Loop
A reader might wonder why do we keep two separate lists, i.e., the list τ for holding callbacks
coming from the ltime or lio queue objects, and the list κ for callbacks of any other queue
objects. The intuition behind this design choice is that it is convenient for us to model the
concrete semantics of the event loop correctly. In particular, the implementation of the event
loop assigns different priorities to the callbacks depending on their kind [24, 31]. For example,
the event loop processes a callback of a promise object before any callback of a timer or an
asynchronous I/O operation regardless of their registration order.

In this context, Figure 5 demonstrates the semantics of the event loop. The [event-loop]
rule pops the first scheduled callback from the list κ. Then, we get the queue object specified
in that callback, and we attach it to the front of the queue chain. Adding the queue object q
to the top of the queue chain allows us to reject that queue object if there is an uncaught
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〈e ∈ Exp〉 ::= ...
| addTimerCallback(e1, e2, e3, . . . )
| addIOCallback(e1, e2, e3, . . . )

〈E〉 ::= ..
| addTimerCallbackCallback(E, e, . . . ) | addTimerCallback(v, . . . , E, e, . . . )
| addIOCallback(E, e, . . . ) | addIOCallback(v, . . . , E, e, . . . )

Figure 6 Extending the syntax of λq to deal with timers and asynchronous I/O.

exception during the execution of f . In this case, the evaluation of fulfill will not have
any effect on the already rejected queue object q (recall the [fullfill-settled] rule). Also,
observe how the event loop is reduced, i.e., q.fulfill(f(a)); pop(); •. Specifically, once we
execute the callback f and fulfill the dependent queue object q with the return value of that
callback, we evaluate pop(), that is, we pop the top element of the queue chain before we
re-evaluate the event loop. This is an invariant of the semantics of the event loop: every
time we evaluate it, the queue chain is always empty.

The [event-loop-timers-io] rule handles the case when the list κ is empty. In other
words, that rule states that if there are not any callbacks, which neither come from the
ltime nor the lio queue object, inspect the list τ , and pick non-deterministically one of those.
Selecting a callback non-deterministically allows us to over-approximate the actual behavior
of the event loop regarding its different execution phases [24]. Overall, that rule describes
the scheduling policy presented in the work of [24], where initially we look for any callbacks
of promises, and if there exist, we select one of those. Otherwise, we choose any callback
associated with timers and asynchronous I/O at random.

2.1.4 Modeling Timers & Asynchronous I/O

q = π(ltime)
π, φ, κ, τ, addTimerCallback(f, n1, . . . )→ π, φ, κ, q.registerFul(f, q, n1, . . . )

[add-timer-callback]

q = π(lio)
π, φ, κ, τ, addIOCallback(f, n1, . . . )→ π, φ, κ, q.registerFul(f, q, n1, . . . )

[add-io-callback]

Figure 7 Extending the semantics of λq to deal with timers and asynchronous I/O.

To model timers and asynchronous I/O, we follow a similar approach to the work of [24].
Specifically, we start with an initial queue π, which contains two queue objects: the qtime,
and qio which are located at the ltime and lio respectively. Both qtime and qio are initialized
as ((fulfilled, ⊥), [], [], ⊥). Besides that, we extend the syntax of λq by adding two more
expressions. Figure 6 shows the extended syntax of λq to deal with timers and asynchronous
I/O, while Figure 7 presents the rules related to those expressions.

The new expressions have high correspondence to each other. Specifically, the addTimerCallback(. . . )
construct adds the callback e1 to the queue object located at the address ltime. We
call the provided callback The arguments of that callback are any optional parameters
passed in addTimerCallback, i.e., e2, e3, and so on. From Figure 7, we observe that the
[add-timer-callback] rule retrieves the queue object q corresponding to the address ltime.
Recall again that the ltime can be found in the initial queue. Then, the given expression
is reduced to q.registerFul(f, q, n1, . . . ). In particular, we add a new callback f to the
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queue object found at ltime. Observe that we pass the same queue object (i.e., q) as the
second argument of registerFul. That means that the execution of f does not affect any
queue object since q is already settled. Recall that according to the [fulfill-settled] rule
(Figure 4), trying to fulfill (and similarly to reject) a settled queue object does not have any
effect. Beyond that, since q is fulfilled with ⊥, the extra arguments (i.e., n1,. . . ) are also
passed as arguments in the invocation of f .

The semantics of the addIOCallback(. . . ) primitive is the same with that of addTimerCallback(. . . );
however, this time, we use the queue object located at lio.

2.2 Expressing Promises in Terms of λq

The queue objects and their operations introduced in λq are very closely related to JavaScript
promises. Therefore, the translation of promises’ operations into λq is straightforward. We
model every property and method (except for Promise.all()) by faithfully following the
ECMAScript specification.

1 Promise.resolve = function(value) {
2 var promise = newQ();
3 if (typeof value.then === "function") {
4 var t = newQ();
5 t.fulfill(⊥);
6 t.registerFul(value.then , t, promise.fulfill , promise.reject);
7 } else
8 promise.fulfill(value);
9 return promise;

10 }

Figure 8 Expressing Promise.resolve in terms of λq

.

Example—Modeling Promise.resolve(): In Figure 8, we see how we model the
Promise.resolve() function in terms of λq. The JavaScript Promise.resolve() function
creates a new promise, and resolves it with the given value. According to ECMAScript,
if the given value is a thenable, (i.e., an object which has a property named “then” and
that property is a callable), the created promise resolves asynchronously. Specifically, we
execute the function value.then() asynchronously, and we pass the resolving functions (i.e.,
fulfill, reject) as its arguments. Observe how the expressiveness of λq can model this
source of asynchrony (lines 4–6). First, we create a fresh queue object t, and we fulfill it with
⊥ (lines 4, 5). Then, at line 6, we schedule the execution of value.then() by registering
it on the newly created queue object t. Notice that we also pass promise.fulfill and
promise.reject as extra arguments. That means that those functions will be the actual
arguments of value.then() because t is fulfilled with ⊥. On the other hand, if value is
not a thenable, we synchronously resolve the created promise using the promise.fulfill

construct at line 8.

3 The Core Analysis

The λq calculus presented in Section 2 is the touchstone of the static analysis proposed for
asynchronous JavaScript programs. The analysis is designed to be sound; thus, we devise
abstract domains and semantics that over-approximate the behavior of λq. Currently, there
are few implementations available for asynchronous JavaScript, and previous efforts mainly
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focus on modeling the event system of client-side applications [17, 32]. To the best of our
knowledge, it is the first static analysis for ES6 promises. The rest of this section describes
the details of the analysis.

3.1 The Analysis Domains

l ∈ Âddr = {li | i is an allocation site} ∪ {ltime, lio}

π ∈ Q̂ueue = Âddr ↪→ P( ̂QueueObject)

q ∈ ̂QueueObject = ̂QueueState× P( ̂Callback)× P( ̂Callback)× P(Âddr)

qs ∈ ̂QueueState = {pending} ∪ ({fulfilled, rejected} × V alue)

clb ∈ ̂Callback = Âddr × Âddr × F × V alue∗

κ ∈ ̂ScheduledCallbacks = (P( ̂Callback))∗

τ ∈ ̂ScheduledT imerIO = (P( ̂Callback))∗

φ ∈ ̂QueueChain = (P(Âddr))∗

Figure 9 The abstract domains of λq.

Figure 9 presents the abstract domains of the λq calculus that underpin our static analysis.
Below we make a summary of our primary design choices.

Abstract Addresses: As a starting point, we employ allocation site abstraction for modeling
the space of addresses. It is the standard way used in literature for abstracting addresses
which keeps the domain finite [18, 26]. Also note that we still define two internal addresses,
i.e., ltime, lio, corresponding to the addresses of the queue objects responsible for timers and
asynchronous I/O respectively.

Abstract Queue: We define an abstract queue as the partial map of abstract addresses to
an element of the power set of abstract queue objects. Therefore, an address might point to
multiple queue objects. This abstraction over-approximates the behavior of λq and allows us
to capture all possible program behaviors that might stem from the analysis imprecision.

Abstract Queue Objects: A tuple consisting of an abstract queue state—observe that the
domain of abstract queue states is the same as λq—two sets of abstract callbacks (executed
on fulfillment and rejection respectively), and a set of abstract addresses (used to store the
queue objects that are dependent on the current one) represents an abstract queue object.
Notice how this definition differs from that of λq. First, we do not keep the registration order
of callbacks; therefore, we convert the two lists into two sets. The programming pattern
related to promises supports our design decision. Specifically, developers often use promises
as a chain; registering two callbacks on the same promise object is quite uncommon. Madsen
et. al. [26] made similar observations for the event-driven programs.

That abstraction can negatively affect precision only when we register multiple callbacks
on a pending queue object. Recall from Figure 4, when we register a callback on a settled
queue object, we can precisely track its execution order since we directly add it to the list of
scheduled callbacks. Second, we define the last component as a set of address; something
that enables us to track all possible dependent queue objects soundly.

Abstract Callback: An abstract callback comprises two abstract addresses, one function,
and a list of values which stands for the arguments of the function. Note that the first address
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corresponds to this object, while the second one is the queue object which the return value
of the function fulfills.

Abstract List of Scheduled Callbacks: We use a list of sets to abstract the domain respons-
ible for maintaining the callbacks which are ready for execution (i.e., ̂ScheduledCallbacks

and ̂ScheduledT imerIO). In this context, the ith element of a list denotes the set of callbacks
that are executed after those placed at the (i− 1)th position and before the callbacks located
at the (i+ 1)th position of the lists. The execution of callbacks of the same set is not known
to the analysis; they can be called in any order. For example, consider the following sequence
[{x}, {y, z}, {w}], where x, y, z, w ∈ ̂Callback. We presume that the execution of elements
y, z succeeds that of x, and precedes that of w, but we cannot compare y with z, since they
are elements of the same set; thus, we might execute y before z and vice versa.

Note that a critical requirement of our domains’ definition is that they should be finite
so that the analysis is guaranteed to terminate. Keeping the lists of scheduled callbacks
bound is tricky because the event loop might process the same callback multiple times, and
therefore, we have to add it to the lists κ or τ more than one time. For that reason, those
lists monitor the execution order of callbacks up to a certain limit n. The execution order of
the callbacks scheduled after that limit is not preserved; thus, the analysis places them in
the same set.

Abstract Queue Chain: The analysis uses the last component of our abstract domains to
capture the effects of uncaught exceptions during the execution of callbacks. We define it as
a sequence of sets of addresses. Based on the abstract translation of the semantics of λq,
when the analysis reaches an uncaught exception, it inspects the top element of the abstract
queue chain and rejects all the queue objects found in that element. If the abstract queue
chain is empty, the analysis propagates that exception to the caller function as usual. Note
that the queue chain is guaranteed to be bound. In particular, during the execution of a
callback, the size of the abstract queue chain is always one because the event loop executes
only one callback at a time. The only case when the size of the abstract queue chain is
greater than 1 is when we have nested promise executors. A promise executor is a function
passed as an argument in a promise constructor. However, since we cannot have an unbound
number of nested promise executors, the size of the abstract queue chain remains finite.

3.1.1 Tracking the Execution Order
Promises. Estimating the order in which the event loop executes callbacks of promises is
straightforward because it is a direct translation of the corresponding semantics of λq. In
particular, there are two possible cases:

Settle a promise which has registered callbacks: When we settle (i.e., either fulfill or reject)
a promise object which has registered callbacks, we schedule those callbacks associated
with the next state of the promise by putting them on the tail of the list κ. For instance,
if we fulfill a promise, we append all the callbacks triggered on fulfillment on the list κ. A
reader might observe that if there are multiple callbacks registered on the same promise
object, we put them on the same set which is the element that we finally add to κ. The
reason for this is that an abstract queue object does not keep the registration order of
callbacks.
Register a callback on an already settled promise: When we encounter a statement of the
form x.then(f1, f2), where x is a settled promise, we schedule either callback f1 or f2
(i.e., we add it to the list κ) depending on the state of that promise, i.e., we schedule
callback f1 if x is fulfilled and f2 if it is rejected.
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Timers & Asynchronous I/O. A static analysis is not able to reason about the external
environment. For instance, it cannot decide when an operation on a file system or a request
to a server is complete. Similarly, it is not able to deal with time. For that purpose, we adopt
a conservative approach for tracking the execution order between callbacks related to timers
and asynchronous I/O. In particular, we assume that the execution order between those
callbacks is unspecified; thus, the event loop might process them in any order. However, we
do keep track the execution order between nested callbacks.

3.2 Callback Graph
In this section, we introduce the concept of callback graph; a fundamental component of our
analysis that captures how data flow is propagated between different asynchronous callbacks.
A callback graph is defined as an element of the following power set:

cg ∈ CallbackGraph = P(Node×Node)

We define every node of a callback graph as n ∈ Node = C × F , where C is the domain
of contexts while F is the set of all the functions of the program. Every element of a
callback graph (c1, f1, c2, f2) ∈ cg, where cg ∈ CallbackGraph has the following meaning:
the function f2 in context c2 is executed immediately after the function f1 in context c1. We
can treat the above statement as the following expression: f1(); f2();

I Definition 1. Given a callback graph cg ∈ CallbackGraph, we define the binary relation
→cg on nodes of the callback graph n1, n2 ∈ Node as:

n1 →cg n2 ⇒ (n1, n2) ∈ cg

I Definition 2. Given a callback graph cg ∈ CallbackGraph, we define the binary relation
→∗cg on nodes of the callback graph n1, n2 ∈ Node as:

n1 →cg n2 ⇒ n1 →∗cg n2

n1 →∗cg n2 ∧ n2 →∗cg n3 ⇒ n1 →∗cg n3, where n3 ∈ Node

Definition 1 and Definition 2 introduce the concept of a path between two nodes in a
callback graph cg ∈ CallbackGraph. In particular, the relation →cg denotes that there is
path of length one between two nodes n1, n2, i.e., (n1, n2) ∈ cg. On the other hand, the
relation →∗cg describes that there is a path of unknown length between two nodes. Relation
→∗cg is very important as it allows us to identify the happens-before relation between two
nodes n1, n2 even if n2 is executed long after n1, that is (n1, n2) 6∈ cg. A significant property
of a callback graph is that it does not have any cycles, i.e.,

∀n1, n2 ∈ Node. n1 →∗cg n2 ⇒ n2 6→∗cg n1

Notice that if n1 6→∗cg n2, and n2 6→∗cg n1 hold, the analysis cannot estimate the execution
order between n1 and n2. Therefore, we presume that n1 and n2 can be called in any order.

3.3 Analysis Sensitivity
3.3.1 Callback Sensitivity
Knowing the temporal relations between asynchronous callbacks enables us to capture how
data flow is propagated precisely. Typically, a naive flow-sensitive analysis, which exploits
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1 function foo() { ... }
2
3 var x = Promise.resolve ()
4 .then(foo)
5 .then(function ff1() { ... })
6 .then(foo)
7 .then(function ff2() { ... })
8 .then(foo)
9 .then(function ff3() { ... });

Figure 10 An example program where we create a promise chain. Notice that we register the
function foo multiple times across the chain.

foo

ff3

ff2ff1

(a) QR-insensitive analysis

ff3ff2ff1foo[c1] foo[c2] foo[c3]

(b) QR-sensitive analysis

Figure 11 Callback graph of program of Figure 10 produced by the QR-insensitive and QR-
sensitive analysis respectively.

the control flow graph (CFG), represents the event loop as a single program point with only
one context corresponding to it. Therefore—unlike traditional function calls—the analysis
misses the happens-before relations between callbacks because they are triggered by the same
program location (i.e., the event loop).

To address those issues, we exploit the callback graph to devise a more precise analysis,
which we call callback-sensitive analysis. The callback-sensitive analysis propagates the state
with regards to the →cg and →∗cg relations found in a callback graph cg ∈ CallbackGraph.
Specifically, when the analysis needs to propagate the resulting state from the exit point of a
callback x, instead of propagating that state to the caller (note that the caller of a callback
is the event loop), it propagates it to the entry points of the next callbacks, i.e., all callback
nodes y ∈ Node where x→cg y holds. In other words, the edges of a callback graph reflect
how the state is propagated from the exit point of a callback node x to the entry point of a
callback node y. Obviously, if there is not any path between two nodes in the graph, that is,
x 6→∗cg y, and y 6→∗cg x, we propagate the state coming from the exit point of x to the entry
point of y and vice versa.
Remark: Callback-sensitivity does not work with contexts to improve the precision of the
analysis. Therefore, we still represent the event loop as a single program point. As a result,
the state produced by the last executed callbacks is propagated to the event loop, leading to
the join of this state with the initial one. The join of those states is then again propagated
across the nodes of the callback graph until convergence. Therefore, there is still some
imprecision. However, callback-sensitivity minimizes the number of those joins, as they are
only caused by the callbacks invoked last.

3.3.2 Context-Sensitivity
Recall from Section 3.2 that a callback graph is defined as P(Node × Node), where n ∈
Node = C × F . It is possible to increase the precision of a callback graph (and therefore the
precision of the analysis) by distinguishing callbacks based on the context in which they are
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invoked. Existing flavors of context-sensitivity are not so useful in differentiating asynchronous
functions from each other. For instance, object-sensitivity [29, 23], which separates invocations
based on the value of the receiver—and has been proven to be particularly effective for the
analysis of object-oriented languages—is not fruitful in the context of asynchronous callbacks
because in most cases the receiver of callbacks corresponds to the global object. Similarly,
previous work in the static analysis of JavaScript [18, 20] creates a context with regards to
the arguments of a function. Such a strategy might not be potent in cases where a callback
expects no arguments or the arguments from two different calls are indistinguishable.

We introduce one novel context-sensitivity flavor—which we call QR-sensitivity—as an
effort to boost the analysis precision. QR-sensitivity separates callbacks according to 1) the
queue object to which they are added (Q), and 2) the queue object their return value fulfills
(R). In this case, the domain of contexts is given by:

c ∈ C = Âddr × Âddr
In other words, every context is a pair (lq, lr) ∈ Âddr × Âddr, where lq stands for the

allocation site of the queue object to which we add a callback, and lr is the abstract address
of the queue object which the return value of a callback fulfills. Notice that this domain is
finite; thus, the analysis always terminates.

Example: As a motivating example, consider the program of Figure 10. This program
creates a promise chain where we register different callbacks at every step of the asynchronous
computation. At line 1, we define the function foo(). We asynchronously call foo() multiple
times, i.e., at lines 4, 6, and 8. Recall that the chains of promises enable us to enforce a
deterministic execution of the corresponding callbacks. Specifically, based on the actual
execution, the event loop invokes the callbacks in the following order: foo() → ff1() →
foo()→ ff2()→ foo()→ ff3(). Figure 11a presents the callback graph of the program of
our example produced by a QR-insensitive analysis. In this case, the analysis considers the
different invocations of foo() as identical. As a result, the analysis loses the temporal relation
between foo() and ff1(), ff2()—indicated by the fact that the respective nodes are not
connected to each other—because foo() is also called both before and after ff1() and ff2().
On the contrary, a QR-sensitive analysis ends up with an entirely precise callback graph
as shown in Figure 11b. The QR-sensitive analysis distinguishes the different invocations
of foo() from each other because it creates three different contexts; one for every call of
foo(). Specifically, we have c1 = (l3, l4), c2 = (l5, l6), c3 = (l7, l8), where li stands for the
promise object allocated at line i. For example, the second invocation of foo() is related to
the promise object created by the call of then() at line 5, and its return value fulfills the
promise object allocated by the invocation of then() at line 6.

3.4 Implementation
Our prototype implementation extends TAJS [18, 19, 17]; a state-of-the-art static analyzer
for JavaScript. TAJS analysis is implemented as an instance of the abstract interpretation
framework [2], and it is designed to be sound. It uses a lattice specifically designed for
JavaScript which is capable of handling the vast majority of JavaScript’s complicated features
and semantics. TAJS analysis is both flow- and context-sensitive. The output of the analysis
is the set of all reachable states from an initial state along with a call graph. TAJS can detect
various type-related errors such as the use of a non-function variable in a call expression,
property access of null or undefined variables, inconsistencies caused by implicit type
conversions, and many others [18].
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1 function open(filename , flags , mode , callback) {
2 TAJS_makeContextSensitive(open , 3);
3 var err = TAJS_join(TAJS_make("Undef"), TAJS_makeGenericError ());
4 var fd = TAJS_join(TAJS_make("Undef"), TAJS_make("AnyNum"));
5 TAJS_addAsyncIOCallback(callback , err , fd);
6 }
7
8 var fs = {
9 open: open

10 ...
11 }

Figure 12 A model for fs.open function. All functions starting with TAJS_ are special functions
whose body does not correspond to any node in the CFG. They are just hooks for producing
side-effects to the state or evaluating to some value, and their models are implemented in Java. For
instance, TAJS_make("AnyStr") evaluates to a value that can be any string.

Prior to our extensions, TAJS consisted of approximately 83,500 lines of Java code. The
size of our additions is roughly 6,000 lines of Java code. Our implementation is straightforward
and is guided by the design of our analysis. Specifically, we first incorporate the domains
presented in Figure 9 into the definition of the abstract state of TAJS. Then, we provide
models for promises written in Java by faithfully following the ECMAScript specification.
Recall again that our models exploit the λq calculus presented in Section 2 and they produce
side-effects that over-approximate the behavior of JavaScript promises. Beyond that, we
implement models for the special constructs of λq, i.e., addTimerCallback, addIOCallback
(Recall Section 2.1.4), which are used for adding callbacks to the timer- and asynchronous
I/O-related queue objects respectively. We implement the models for timers in Java; however,
we write JavaScript models for asynchronous I/O operations, when it is necessary.

For example, Figure 12 shows the JavaScript code that models function open() of the
Node.js module fs. In particular, open() asynchronously opens a given file. When I/O
operation completes, the callback provided by the developer is called with two arguments: 1)
err which is not undefined if there is an error during I/O, 2) fd which is an integer indicating
the file descriptor of the opened file. Note that fd is undefined, if any error occurs. Our
model first makes open() parameter-sensitive on the third argument which corresponds to the
callback provided by the programmer. Then, at lines 3 and 4, it initializes the arguments of
the callback, i.e., err and fd respectively. Observe that we initialize those arguments so that
they capture all the possible execution scenarios, i.e., err might be undefined or point to an
error object, and fd might be undefined or any integer reflecting all possible file descriptors.
Finally, at line 5, we call the special function TAJS_addAsyncIOCallback(), which registers
the given callback on the queue object responsible for I/O operations, implementing the
semantics of the addIOCallback primitive from our λq calculus.

4 Empirical Evaluation

In this section, we evaluate our static analysis on a set of hand-written micro-benchmarks and
a set of real-world JavaScript modules. Then, we experiment with different parameterizations
of the analysis, and report the precision and performance metrics.

4.1 Experimental Setup
To test that our technique behaves as expected we first wrote a number of micro-benchmarks.
Each of those programs consists of approximately 20–50 lines of code and examines certain
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Benchmark LOC ELOC Files Dependencies Promises Timers/Async I/O

controlled-promise 225 225 1 0 4 1
fetch 517 1,118 1 1 26 2
honoka 324 1,643 6 6 4 1
axios 1,733 1,733 26 0 7 2
pixiv-client 1,031 3,469 1 2 64 2
node-glob 1,519 6,131 3 6 0 5
Table 1 List of selected macro-benchmarks and their description. Each benchmark is described by

its lines of code (LOC), its lines of code including its dependencies (ELOC), number of files, number
of dependencies, number of promise-related statements (e.g., Promise.resolve(), Promise.reject(),
then(), etc.), and number of statements associated with timers (e.g., setTimeout(), setImmediate(),
etc.) or asynchronous I/O (e.g., asynchronous file system or network operations etc.).

parts of the analysis. Beyond micro-benchmarks, we evaluate our analysis on 6 real-world
JavaScript modules. The most common macro benchmarks for static analyses used in the
literature are those provided by JetStream2, and V8 engine3[18, 20, 21]. However, those
benchmarks are not asynchronous; thus, they are not suitable for evaluating our analysis.
To find interesting benchmarks, we developed an automatic mechanism for collecting and
analyzing Github repositories. First, we collected a large number of Github repositories
using two different options. The first option extracted the Github repositories of the most
depended upon npm packages4. The second option employed the Github API5 to find
JavaScript repositories which are related to promises. We then investigated the Github
repositories which we collected at the first phase by computing various metrics such as lines
of code, number of promise-, timer- and asynchronous IO-related statements. We manually
selected the 6 JavaScript modules presented in Table 1. Most of them are libraries for
performing HTTP requests or file system operations.

We experiment with 4 different analyses: 1) an analysis which is neither callback- nor
QR-sensitive (NC-No), 2) a callback-insensitive but QR-sensitive analysis (NC-QR), 3) a
callback-sensitive but QR-insensitive analysis (C-No), and 4) a both callback- and QR-
sensitive analysis (C-QR). We evaluate the precision of each analysis in terms of the number
of the analyzed callbacks, the precision of the computed callback graph, and the number of
reported type errors. We define the precision of a callback graph as the quotient between
the number of callback pairs whose execution order is determined and the total number of
callback pairs. Also, we embrace a client-based precision metric, i.e., the number of reported
type errors as in the work of [20]. The fewer type errors an analysis reports, the more precise
it is. The same applies to the number of callbacks inspected by the analysis; fewer callbacks
indicate a more accurate analysis. To compute the performance characteristics of every
analysis, we re-run every experiment ten times in order to receive reliable measurements. All
the experiments were run on a machine with an Intel i7 2.4GHz quad-core processor and 8GB
of RAM.

4.2 Results
Micro-benchmarks. Table 2 shows how precise every analysis is on every micro-benchmark.

2 https://browserbench.org/JetStream/
3 http://www.netchain.com/Tools/v8/
4 https://www.npmjs.com/browse/depended
5 https://developer.github.com/v3/

https://github.com/vitalets/controlled-promise
https://github.com/github/fetch
https://github.com/kokororin/honoka
https://github.com/axios/axios
https://github.com/alphasp/pixiv-api-client
https://github.com/isaacs/node-glob
https://browserbench.org/JetStream/
http://www.netchain.com/Tools/v8/
https://www.npmjs.com/browse/depended
https://developer.github.com/v3/
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Analyzed Callbacks Callback Graph Precision Type Errors

Benchmark NC-No NC-QR C-No C-QR NC-No NC-QR C-No C-QR NC-No NC-QR C-No C-QR
micro01 5 5 4 4 0.8 0.8 1.0 1.0 2 2 0 0
micro02 3 3 3 3 1.0 1.0 1.0 1.0 1 1 0 0
micro03 2 2 2 2 1.0 1.0 1.0 1.0 1 1 0 0
micro04 4 4 4 4 0.5 0.5 0.5 0.5 1 1 1 1
micro05 8 8 7 7 0.96 0.96 1.0 1.0 3 3 0 0
micro06 11 11 11 11 1.0 1.0 1.0 1.0 3 3 1 1
micro07 14 14 13 13 0.86 0.87 1.0 1.0 1 1 0 0
micro08 5 5 5 5 0.8 0.8 0.8 0.8 1 1 0 0
micro09 5 5 4 4 0.9 0.9 1.0 1.0 1 1 0 0
micro10 3 3 3 3 1.0 1.0 1.0 1.0 1 1 1 1
micro11 4 4 4 4 0.83 0.83 0.83 0.83 5 5 5 5
micro12 5 5 5 5 0.9 0.9 1.0 1.0 2 2 0 0
micro13 4 4 3 3 0.83 0.83 1.0 1.0 1 1 0 0
micro14 6 6 5 5 0.8 0.8 1.0 1.0 2 2 0 0
micro15 6 6 6 6 0.8 0.8 1.0 1.0 0 0 0 0
micro16 6 6 6 6 1.0 1.0 1.0 1.0 1 1 0 0
micro17 3 3 3 3 0.67 0.67 0.67 0.67 2 2 2 2
micro18 4 3 4 3 0.83 1.0 0.83 1.0 1 0 1 0
micro19 14 7 14 7 0.73 0.93 0.74 1.0 0 0 0 0
micro20 6 6 6 6 0.93 0.93 1.0 1.0 0 0 0 0
micro21 5 5 4 4 0.9 0.9 1.0 1.0 1 1 0 0
micro22 6 6 5 5 0.87 0.87 0.9 0.9 1 1 0 0
micro23 6 6 5 5 0.87 0.87 1.0 1.0 3 3 1 1
micro24 3 3 3 3 1.0 1.0 1.0 1.0 2 2 1 1
micro25 8 8 8 8 0.79 0.79 0.79 0.79 1 1 0 0
micro26 9 9 7 7 0.89 0.89 1.0 1.0 3 3 1 1
micro27 3 3 3 3 1.0 1.0 1.0 1.0 1 1 1 1
micro28 7 7 7 7 0.81 0.81 0.81 0.81 1 1 1 1
micro29 4 4 4 4 0.5 1.0 0.5 1.0 0 0 0 0
Average 5.83 5.55 5.45 5.17 0.85 0.88 0.91 0.94 1.45 1.41 0.55 0.52

Total 169 161 158 150 42 41 16 15

Table 2 Precision on micro-benchmarks.

Starting with callback-insensitive analyses (i.e., columns NC-No and NC-QR), we observe
that in general QR-sensitivity improves the precision of the callback graph by 3.6% on
average. That small boost of QR-sensitivity is explained by the fact that only 3 out of 29
micro-benchmarks invoke the same callback multiple times.

Recall from Section 3.3.2 that QR-sensitivity is used to distinguish different calls of the
same callback. Therefore, if one program does not use a specific callback multiple times,
QR-sensitivity does not make any difference. However, if we focus on the results of the
micro-benchmarks where we come across such behaviors, i.e. micro18, micro19, and micro29,
we get a significant divergence of the precision of callback graph. Specifically, QR-sensitivity
improves precision by 20.5%, 27.4% and 100% in micro18, micro19 and micro29 respectively.
Besides that, in micro19, there is a striking decrease in the number of the analyzed callbacks:
the QR-insensitive analyses inspect 14 callbacks compared to the QR-sensitive analyses which
examine only 7.

The results regarding the number of type errors are almost identical for every analysis: a
QR-insensitive analysis reports 42 type errors in total, whereas all the other QR-sensitive
analyses produce warnings for 41 cases.

Moving to callback-sensitive analyses, the results indicate clear differences. First, a
callback-sensitive but QR-insensitive analysis reports only 16 type errors in total (i.e., 61.9%
fewer type errors than callback-insensitive analyses), and amplifies the average precision
of the callback graph from 0.85 to 0.91. As before, the QR-sensitive analyses boost the
precision of the callback graph by 20.4%, 35.1%, and 100% in micro18, micro19, and micro29
respectively. Finally, a callback-sensitive and QR-insensitive analysis decreases the total
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Analyzed Callbacks Callback Graph Precision Type Errors

Benchmark NC-No NC-QR C-No C-QR NC-No NC-QR C-No C-QR NC-No NC-QR C-No C-QR
controlled-promise 6 6 6 6 0.866 0.905 0.866 0.905 3 3 2 2
fetch 22 22 19 19 0.829 0.956 0.822 0.972 8 8 6 6
honoka 8 8 6 6 0.929 0.929 1.0 1.0 1 1 0 0
axios 15 15 14 14 0.678 0.83 0.686 0.871 2 2 1 1
pixiv-client 18 18 17 15 0.771 0.803 0.794 0.863 3 3 3 2
node-glob 3 3 3 3 0.667 0.667 0.667 0.667 19 19 19 19
Average 12 12 10.8 10.5 0.79 0.848 0.805 0.88 6 6 5.1 5

Total 72 72 65 63 36 36 31 30

Table 3 Precision on macro-benchmarks.

Average Time Median

Benchmark NC-No NC-QR C-No C-QR NC-No NC-QR C-No C-QR
controlled-promise 2.3 2.22 2.27 2.28 2.29 2.26 2.25 2.31
fetch 8.53 7.97 7.07 6.98 8.52 8.26 7.46 7.22
honoka 4.14 4.05 3.86 3.94 4.12 4.0 3.61 3.81
axios 6.99 7.86 6.74 8.32 7.02 8.0 6.94 8.37
pixiv-client 22.11 24.92 24.77 28.89 22.19 25.16 24.65 29.2
node-glob 15.55 16.71 15.46 14.47 16.62 16.71 16.17 15.74
Table 4 Times of different analyses in seconds.

number of the analyzed callbacks from 169 to 158. Notice that if callback-sensitivity and
QR-sensitivity are combined, the total number of callbacks is reduced by 11.2%.

Macro-benchmarks. Table 3 reports the precision metrics of every analysis of the macro-
benchmarks. First, we make similar observations as those of micro-benchmarks. In general,
QR-sensitivity leads to a more precise callback graph for 4 out of 6 benchmarks. The
improvement ranges from 4.6% to 26.9%. On the other hand, callback-sensitive analyses
contribute to fewer type errors for 5 out of 6 benchmarks reporting 16.7% fewer type errors
in total. Additionally, if we combine QR- and callback-sensitivity, we can boost the analysis
precision for 5 out of 6 benchmarks. Specifically, the QR- and callback-sensitive analysis
improves the callback graph precision by up to 28.5% (see the axios benchmark), and achieves
a 88% callback graph precision on average. On the other hand, the naive analysis (neither
QR- nor callback-sensitive) reports only a 79% precision for callback graph on average.

By examining the results for the node-glob benchmark, we see that every analysis
produces identical results. node-glob uses only timers and asynchronous I/O operations.
Neither callback- nor QR-sensitivity is effective for that kind of benchmarks, since we follow
a conservative approach for modeling the execution order of timers and asynchronous I/O,
regardless of the registration order of their callbacks. For example, we assume that two
callbacks x and y are executed in any order, even if x is scheduled before y (and vice versa).
Therefore, keeping a more precise state does not lead to a more precise callback graph.

Table 4 gives the running times of every analysis on macro-benchmarks. We notice that
in some benchmarks (such as fetch) a more precise analysis may decrease the running times
by 3%–18%. This is justified by the fact that a more precise analysis might compress the
state faster than an imprecise analysis. For instance, in fetch, an imprecise analysis led to
the analysis of 3 spurious callbacks, yielding to a higher analysis time. The results appear to
be consistent with those of the recent literature which suggests that precision might lead to
a faster analysis in some cases [32]. On the other hand, we observe a non-trivial decrease in
the analysis performance in only benchmark. Specifically, the analysis sensitivity increased
the running times of pixiv-client by 12%–30.6%. However, such an increase seems to be
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1 function consumed(body) {
2 if (body.bodyUsed) {
3 return Promise.reject(new

TypeError("Already read"));
4 }
5 body.bodyUsed = true;
6 }
7 ...
8 function Body() {
9 ...

10 this.bodyUsed = false;
11 this._bodyInit = function () {
12 ...
13 if (typeof body === "string") {
14 this._bodyText = body;
15 } else if (

Blob.prototype.isPrototypeOf(
body)) {

16 this._bodyBlob = body;
17 }
18 ...
19 }
20 this.text = function text() {
21 var rejected = consumed(this);
22 if (rejected) {
23 return rejected;
24 }
25 if (this._bodyBlob) {
26 return readBlobAsText(

this._bodyBlob);
27 } else if (this._bodyArrayBuffer

) {
28 return Promise.resolve(

readArrayBufferAsText(
this._bodyArrayBuffer))

;
29 } else if (this._bodyFormData) {
30 throw new Error("could not

read FormData body as
text");

31 } else {
32 return Promise.resolve(

this._bodyText);
33 }
34 };
35 ...
36 this.formData = function formData () {
37 return this.text ().then(decode);
38 }
39 }
40 ...
41 function Response(body) {
42 ...
43 this._bodyInit(body);
44 }
45 Body.call(Response.prototype);
46 ...
47 function fetch(input , init) {
48 return new Promise(function (resolve ,

reject) {
49 ...
50 var xhr = new XMLHttpRequest ();
51 xhr.onload = function onLoad () {
52 ...
53 resolve(new Response(xhr.response)

);
54 }
55 });
56 }

Figure 13 Code fragment taken from fetch.

acceptable.

4.3 Case Studies
In this section, we describe some case studies coming from the macro-benchmarks.

fetch. Figure 13 shows a code fragment taken from fetch6. Note that we omit irrelevant
code for brevity. The function Body() defines a couple of methods (e.g., text(), formData())
for manipulating the body of a response. Observe that those methods are registered on
the prototype of Response using the function Function.prototype.call() at line 45. Note
that Body also contains a method (i.e., _initBody()) for initializing the body of a response
according to the type of the input. To this end, the Response constructor takes a body as
a parameter and initializes it through the invocation of _initBody() (lines 41, 43). The
function text() reads the body of a response in a text format (lines 20–34). If the body
of the response has been already read, text() returns a rejected promise (lines 3, 22–23).
Otherwise, it marks the property bodyUsed of the response object as true (line 5), and then it
returns a fulfilled promise depending on the type of the body of the provided response (lines
25–33). The function formData() (lines 36–38) asynchronously reads the body of a response
in a text format, and then it parses it into a FormData object7 through the call of the function
decode(). The function fetch() (lines 47–56) makes a new asynchronous request. When the
request completes successfully, the callback onLoad() is executed asynchronously (line 51).

6 https://github.com/github/fetch
7 https://developer.mozilla.org/en-US/docs/Web/API/FormData

https://github.com/github/fetch
https://developer.mozilla.org/en-US/docs/Web/API/FormData
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Listing 1 Case 1
1 fetch("/helloWorld").then(function

foo(value) {
2 var formData = value.formData ();
3 // Do something with form data.
4 })

Listing 2 Case 2
1 var response = new Response("foo=bar"

);
2 var formData = response.formData ();
3 var response2 = new Response(new Blob

("foo=bar"));
4 var formData2 = response2.formData ();

Figure 14 Code fragments which use the fetch API.

That callbacks finally fulfills the promise returned by fetch() with a new response object
initialized with the response of the server (line 53).

In Listing 1, we make an asynchronous request to the endpoint “/helloWorld” using the
fetch API. Upon success, we schedule the callback foo(). Recall that the parameter value
of foo() corresponds to the response object coming from line 53 (Figure 13). In foo(), we
convert the response of the server into a FormData object (line 2). A callback-insensitive
analysis, which considers that the event loop executes all callbacks in any order, merges all
the data flow stemming from those callbacks into a single point. As a result, the side effects
of onLoad() and foo() are directly propagated to the event loop. In turn, the event loop
propagates the resulting state again to those callbacks. This is repeated until convergence.
Specifically, the callback foo() calls value.formData(), which updates the property bodyUsed

of the response object to true (Figure 13, line 5). The resulting state is propagated to the
event loop where is joined with the state which stems from the callback onLoad(). Notice
that the state of onLoad() indicates that bodyUsed is false because the callback onLoad()

creates a fresh response object. (Figure 13, lines 10, 53). The join of those states changes
the abstract value of bodyUsed to >. That change is propagated again to foo().

This imprecision makes the analysis to consider both if and else branches at lines 2–5.
Thus, the analysis allocates a rejected promise at line 3, as it mistakenly considers that
the body has been already consumed. This makes consumed() return a value that is either
undefined or a rejected promise at line 23. The value returned by consumed() is finally
propagated to formData() at line 37, where the analysis reports a false positive; a property
access of an undefined variable (access of the property “then”), because text() might return
an undefined variable due to the return statement at line 26. A callback-sensitive analysis
neither reports a type error at line 43 nor creates a rejected promise at line 4. It respects
the execution order of callbacks, that is, the callback foo() is executed after the callback
onLoad(). Therefore, the analysis propagates a more precise state to the entry of foo(): the
state resulted by the execution of onLoad(), where a new response object is initialized with
the field bodyUsed set to false.

In Listing 2, we initialize a response object with a body which has a string type (line 2).
In turn, by calling the formData() method, we first read the body of the response in a text
format, and then we decode it into a FormData object by asynchronously calling the decode()
function (Figure 13, line 37). Since the body of the response is already in a text format,
text() returns a fulfilled promise (Figure 13, line 32). At the same time, at line 5 of Listing 2,
we allocate a fresh response object whose body is an instance of Blob8. Therefore, calling
formData() schedules function decode() again. However this time, the callback decode() is
registered on a different promise because the second call of text() returns a promise created

8 https://developer.mozilla.org/en-US/docs/Web/API/Blob

https://developer.mozilla.org/en-US/docs/Web/API/Blob
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by the function readBlobAsText() (Figure 13, line 26). A QR-sensitive analysis—which
creates a context according to the queue object on which a callback is registered—is capable
of separating the two invocations of decode() because the first call of decode() is registered
on the promise object which comes from line 32, whereas the second call of decode() is added
to the promise created by readBlobAsText() at line 26.

honoka. We return back to Figure 1. Recall that a callback-insensitive analysis reports a
spurious type error at line 17 when we try to access the property headers of honoka.response
because it considers the case where the callback defined at lines 15–23 is executed before
that defined at lines 2–14. Thus, honoka.response might be uninitialized (recall that
honoka.response is initialized during the execution of the first callback at line 3). On the
other hand, a callback-sensitive analysis consults the callback graph when it is time to
propagate the state from the exit point of a callback to the entry point of another. In
particular, when we analyze the exit node of the first callback, we propagate the current state
to the second callback. Therefore, the entry point of the second function has a state which
contains a precise value for honoka.response, that is, the object coming from the assignment
at line 3.

4.4 Threats to Validity
Below we pinpoint the main threats to the validity of our results:

Our analysis is an extension of an existing analyzer, i.e., TAJS. Therefore, the precision
and performance of TAJS play an important role on the results of our work.
Even though our analysis is designed to be sound, it models some native functions of the
JavaScript language unsoundly. For instance, we unsoundly model the native function
Object.freeze(), which is used to prevent an object from being updated. Specifically,
the model of Object.freeze() simply returns the object given as argument.
We provide manual models for some built-in Node.js modules like fs, http, etc. or other
APIs used in client-side applications such as XMLHttpRequest, Blob, etc. However, manual
modeling might neglect some of the side-effects which stem from the interaction with
those APIs, leading to unsoundness [14, 32].
Our macro-benchmarks consist of JavaScript libraries. Therefore, we needed to write
some test cases that invoke the API functions of those benchmarks. We provided both
hand-written test cases and test cases or examples taken from their documentation, trying
to test the main APIs that exercise asynchrony in JavaScript.

5 Related Work

In this section, we briefly present previous work related to the formalization and program
analysis for (asynchronous) JavaScript.

Semantics. Maffeis et al. [27] presented one of the first formalizations of JavaScript by
designing small-step operational semantics for a subset of the 3rd version of ECMAScript. In
subsequent work, Guha et al.[15] expressed the semantics of the 3rd edition of ECMAScript
through a different approach; they developed a lambda calculus called λJS, and provided a
desugaring mechanism for converting JavaScript code into λJS. We used λJS as a base for
modeling asynchronous JavaScript. Later, Gardner et al. [12] introduced a program logic
for reasoning about client-side JavaScript programs which support ECMAScript 3. They
presented big-step operational semantics on the basis of that proposed by [27], and they
introduced inference rules for program reasoning which are highly inspired from separation
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logic [34]. More recently, Madsen et al. [25] and Loring et al. [24] extended λJS for modeling
promises and asynchronous JavaScript respectively. Our model is a variation of their
works; our modifications enable us to model almost all the sources of asynchrony found in
JavaScript—some of them are not handled by their models.

Static Analysis for JavaScript. Guarnieri et al. [14] proposed one of the first pointer
analyses for a subset of JavaScript. They precluded the use of eval-family functions from
their analysis as their work focused on widgets where the use of eval is not common. It was
one of the first works that managed to model some of the peculiar features of JavaScript such
as prototype-based inheritance. TAJS [18, 19, 17] is a typer analyzer for JavaScript which
is implemented as a classical dataflow analysis. Our work is implemented as an extension
of TAJS. SAFE [22] is a static analysis framework, which provides three different formal
representations of JavaScript programs: an abstract syntax tree (AST), an intermediate
language (IR) and a control-flow graph (CFG). SAFE implements a default analysis phase
which is plugged after the construction of CFG. This analysis adopts a similar approach
with that of TAJS, i.e., a flow- and context-sensitive analysis which operates on top of
CFG. JSAI [20] implements an analysis through the abstract interpretation framework [2].
Specifically, it employs a different approach compared to other existing tools. Unlike TAJS
and SAFE, JSAI operates on top of AST rather than CFG; it is flow-sensitive though. To
achieve this, the abstract semantics is specified on a CESK abstract machine [9], which
provides small-step reduction rules and an explicit data structure (i.e., continuation) which
describes the rest of computation, unwinding the flow of the program in this way. The
analysis is configurable with different flavors of context-sensitivity which are plugged into
the analysis through widening operator used in the fix-point calculation [16].

Existing static analyses provide sufficient support for precisely modeling browser envir-
onment. Jensen et al. [17] modeled HTML DOM by creating a hierarchy of abstract states
which reflect the actual HTML object hierarchy. Before the analysis begins, an initial heap is
constructed which contains the set of the abstract objects corresponding to the HTML code
of the page. Park et al. [32] followed a similar approach for modeling HTML DOM. They
also provided a more precise model which respects the actual tree hierarchy of the DOM.
For example, their model distinguishes whether one DOM node is nested to another or not.

Program Analysis for Asynchronous JavaScript Programs. The majority of
static analyses for JavaScript treat asynchronous programs conservatively [18, 22, 20]—they
assume that the event loop processes all the asynchronous callbacks in any order—leading to
the analysis imprecision. Also, they focus on the client-side applications, where asynchrony
mainly appears in DOM events and AJAX calls. Madsen et al. [26] proposed one of the first
static analysis for server-side event-driven programs. Although their approach is able to
handle asynchronous I/O operations—unlike our work—they do not provide support for ES6
promises. Additionally, their work introduced a context-sensitivity strategy which tries to
imitate the different iterations of the event loop. However, it imposes a large overhead on the
analysis; it is able to handle only small programs (less than 400 lines of code). In our work, we
propose callback-sensitivity which improves precision without highly sacrificing performance.
More recently, Alimadadi et al. [1] presented a dynamic analysis technique for detecting
promise-related errors and anti-patterns in JavaScript programs. Specifically, their approach
exploits the promise graph; a representation designed for debugging promise-based programs.
Beyond promises, our work also handles a broad spectrum of asynchronous features.

Race Detection. Zheng et al. [39] presented one of the first race detectors by employing
a static analysis for identifying concurrency issues in asynchronous AJAX calls. The aim
of their analysis was to detect data races between the code which pre-processes an AJAX
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request and the callback invoked when the response of the server is received. A subsequent
work [33] adopted a dynamic analysis to detect data races in web applications. They first
proposed a happens-before relation model to capture the execution order between different
operations that are present in a client-side application, such as the loading of HTML elements,
execution of scripts, etc. Using this model, their analyses reports data races, by detecting
memory conflicts between functions, where there is not any happens-before relation to each
other. However, their approach introduced a lot of false positives because most data races
did not lead to severe concurrency bugs. Mutlu et al. [30] combined both dynamic and static
analysis and primarily focused on detecting data races that have pernicious consequences on
the correctness of applications, such as those which affect the browser storage. Initially, they
collected the execution traces of an application, and then, they applied a dataflow analysis
on those traces to identify data races. Their approach effectively managed to report a very
small number of false positives.

6 Conclusions & Future Work

Building upon previous works, we presented the λq calculus for modeling asynchrony in
JavaScript. Our calculus λq is flexible enough so that we can express almost every asynchron-
ous primitive in the JavaScript language up to the 7th edition of the ECMAScript. We then
presented an abstract version of λq which over-approximates the semantics of our calculus.

By exploiting that abstract version, we designed and implemented what is, to the best
of our knowledge, the first static analysis for dealing with a wide range of asynchrony-
related features. At the same time, we introduced the concept of callback graph; a directed
acyclic graph which represents the temporal relations between the execution of asynchronous
callbacks, and we proposed a more precise analysis, i.e. callback-sensitive analysis that respects
the execution order of callbacks. We parameterized our analysis with a new context-sensitivity
flavor that is specifically used for asynchronous callbacks.

We then experimented with different parameterizations of our analysis on a set of hand-
written and real-world programs. The results revealed that we can analyze medium-sized
JavaScript programs using our approach. The analysis sensitivity (i.e., both callback- and
context-sensitivity) is able to ameliorate the analysis precision without highly sacrificing
performance. Specifically, as observed in the real-world modules, our analysis achieves a 79%
precision for the callback graph, on average. If we combine callback- and QR-sensitivity, we
can further improve the callback graph precision by up to 28.5%. Also, the callback- and
QR-sensitive analysis achieves a 88% callback graph precision on average, and reduces the
total number of type errors by 16.7%.

Our work constitutes a general technique that can be used as a base for further research.
Specifically, recent studies showed that concurrency bugs found in JavaScript programs may
sometimes be caused by asynchrony [38, 4]. We could leverage our work to design a client
analysis on top of it so that it statically detects data races in JavaScript programs. Our
callback graph might be an essential element for such an analysis because we can inspect it
to identify callbacks whose execution might be non-deterministic, i.e., unconnected nodes in
the callback graph.
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