
Integrating and deploying heterogeneous components by

means of a microservices architecture in the

CROSSMINER project

Amin Boudeffa1, Antonin Abherve1, Alessandra Bagnato1, Davide Di Ruscio2, Márcio

Mateus3, Bruno Almeida3

1Softeam R&D Department, France

firstname.lastname@softeam.fr

2University of L’Aquila, Italy

firstname.lastname@univaq.it

3Unparallel Innovation, Lda, Portugal

firstname.lastname@unparallel.pt

Abstract. The CROSSMINER project is an open source project, which is motivat-

ed by the increasing dependence on existing open-source software (OSS) to devel-

op new complex systems. The project is a follow-up of the previous OSSMETER

project. The complexity and diversity of new CROSSMINER components and ex-

isting OSSMETER ones raised challenges related to the integration and the com-

munications among heterogenous built-in components as well as addressing securi-

ty aspects for the whole project. In this paper, we present a microservice architec-

ture, which is implemented by relying on Docker to support the integration and de-

ployment of the CROSSMINER components.

Keywords: Open Source Software, Heterogeneous Legacy Components, Integra-

tion, Deployment, Microservice.

Project data

– Acronym: CROSSMINER

– Title: Developer-Centric Knowledge Mining from Large Open-Source Software

Repositories.

– Partners: The Open Group, University of York, University of L’Aquila, Athens

University of Economics & Business, Bitergia, Castalia Solutions, Centrum

Wiskunde & Informatica, Eclipse Foundation Europe, Edge Hill University,

FrontEndART, OW2 Consortium, Softeam, The Open Group, University of

L’Aquila, University of York, Unparallel Innovation.

– Start date: 1 January 2017.

– Duration: 36 months.

– Web site: https://www.crossminer.com/

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:firstname.lastname@univaq.it
https://www.dmst.aueb.gr/index.php/en/
https://www.dmst.aueb.gr/index.php/en/
https://www.bitergia.com/
https://castalia.solutions/
https://www.cwi.nl/
https://www.cwi.nl/
https://eclipse.org/
https://www.edgehill.ac.uk/computerscience/
https://frontendart.com/
https://www.ow2.org/
http://www.softeam.fr/
https://www.opengroup.org/
http://www.disim.univaq.it/main/index.php
http://www.disim.univaq.it/main/index.php
http://www.cs.york.ac.uk/
http://www.unparallel.pt/

68 A Boudeffa et al.

1 Introduction

Open-source software (OSS) is computer software distributed with a license that allows

access to its source code, free redistribution and the creation of derived works. Unlike

commercial software which is typically developed within the context of the organization

with a well-established business plan and commitment to the maintenance, documenta-

tion and support of the software, OSS is very often developed in a public, collaborative,

and loosely-coordinated manner. This has several implications to the level of quality of

OSS as well as to the level of support that OSS communities provide to users of the

software they produce. Consequently, developing new software systems by reusing ex-

isting open source components raises challenges related to at least the following activi-

ties: i) searching for candidate components, ii) evaluating a set of retrieved candidate

components to find the most suitable one, and iii) adapting the selected components to fit

the specific requirements. Dependence on OSS projects can either be a blessing or a

curse [1]. The ability to accurately assess the risks and benefits of adopting OSS projects

as components is essential to the software development community at large.

The EU CROSSMINER project works toward providing a standard way to help the de-

veloper’s community through increasing dependence on existing open-source software

(OSS). The project aims to automatically extracting required knowledge by applying

mining techniques of different information source of the OSS projects and then injecting

them as recommendations into the developers' Integrated Development Environments

(IDE), at the time they need it to make design decisions.

The paper is structured as follows: The next section provides a review of related

works about the project. Section 3 gives the integration challenges of the heterogenous

and legacy components. Section 4 presents the planned integration tasks of the

CROSSMINER components. Section 5 describe the outline deployment approach of the

CROSSMINER platform.

2 Related Work

The EU OSSMETER FP7[2] project developed a distributed and horizontally-scalable

platform for incremental analysis of multiple dimensions of open-source software pro-

jects including their source code, communication channels, and bug tracking systems.

The aim of CROSSMINER is to extend the outcomes of the OSSMETER project and to

deliver an integrated open-source platform that will support the development of complex

software systems by (1) enabling monitoring, in-depth analysis and evidence-based se-

lection of open source components, and (2) facilitating knowledge extraction from large

opensource software repositories [1].

This paper is a follow up of the work already done on the EU CROSSMINER 2017

STAF-RPS [1] which will focus on the SOFTEAM’s mission within the project as a

consortium partner which oversaw the architecture specification, the legacy components

integration and evolution.

The CROSSMINER project 69

3 The CROSSMINER’s Components Complexity

3.1 Overview

The CROSSMINER project integrates a set of components, which built using complete-

ly a legacy technology stack. Furthermore, other components are added in the current

project following the same architectural approach, which includes new source code and

NLP (Natural Language Processing) measurement tools, system configuration DevOps

tools, workflow-based knowledge extractors and advanced IDE (Integrated Development

Environments).

Figure 1 presents the logical architecture of the CROSSMINER platform, by identifying

the functional modules that compose the platform and identifying the contribution from

the OSSMETER project.

Figure 1. The CROSSMINER logical architecture.

These tools available on [3] were adapted and improved in the context of

CROSSMINER activities and were included in the Metric Platform module, aggregating

all the metric providers and metric execution infrastructures.

3.2 The integration challenges

The CROSSMINER project is a complex platform that assembles several components to

provide an accurate analysis of open-source software. The complexity and diversity

of these components including those legacy ones inherited from OSSMETER raised

challenges related to the integration process to establish a common means of communi-

cation among the heterogenous built-in components. On the other side, the platform’s

frontend clients aim to have a seamless way to interact with these macro components

through a unified entry-point rather than calling individual service endpoints that may

help reduce and maintain the complexity level. Finally, by choosing a mean to connect

these components implies the need to provide a flexible, secure, and efficient authentica-

tion and authorization scheme of the stack endpoints publicly exposed.

To handle all these issues, we explored some technologies inspired from microservice

architecture to assembly those heterogenous components into a unified platform.

70 A Boudeffa et al.

4 Integrating the Heterogeneous Legacy Components

Microservices are essentially independent software services that provide a specific busi-

ness functionality in a software application. Each microservice is loosely coupled with

other services. These services are self-contained and serve a single functionality.

The first integration task focuses on identifying the principal macro components, by

delineating their perimeters and administering interactions between them, as defined in

Figure 2. In this context, we have identified the macro components that support the ser-

vices provided by the CROSSMINER platform and the clients composed of applications,

which consume these services.

Figure 2. CROSSMINER macro-components architecture

In our integration approach, we have made the choice of not imposing a common tech-

nology for the implementation of the different services that compose the platform and

did not make any assumptions about where and how CROSSMINER components will be

deployed. Our only requirement is that the components must provide a REST endpoint

for their services and that all communication between services and clients or between

services itself must be implemented through such APIs.

The second integration aspect is to address the high-level complexity due to the commu-

nication between the front clients and the macro components. Here, the key concept is to

provide a unified REST API that aggregates all the services provided by the other

CROSSMINER components. The new component was added to the architecture: API

Gateway. It is a pattern, which comes from microservices ecosystem and that represents

a single point of control for frontend clients by allowing them to consume services pro-

vided by the different platform components (see Figure 2). Also, it acts as a reverse web-

proxy that redirects client’s requests to services provided by the platform components.

With this approach the client only has to know the URL of the API Server to access all

the services provided by the platform. At the same time, the REST API of the compo-

nents can be refactored with no changes to the API provided by the API Gateway.

The last challenge is confronted with the need to secure access to the services provided

by the CROSSMINER platform. To this end we setup an authentication system at the

level of the API Gateway based on the JSON Web Token (JWT) security mechanism [5]

as shown in Figure 2. The authentication service allows to secure the heterogeneous

REST service bundle in a centralized way by allowing the CROSSMINER administra-

tion, when required, to protect specific resources and to define different authorization

levels for different clients.

https://jwt.io/

The CROSSMINER project 71

5 Deploying Heterogeneous Legacy Components

For the deployment of the CROSSMINER platform, as each of the CROSSMINER

components has its own procedures and requirements for building and deployment, it is

planned to follow a deployment strategy based on containers. This kind of approach

provides several advantages related e.g., to the isolation of the components processes

inside standalone containers, speed up the container’s deployment, etc.

Regarding the container technologies, Docker has been considered as the favorite stand-

ard for this kind of technologies. This is due the fact the Docker execution engine as

currently assuming a very stable behavior on the major operation systems (i.e. Windows,

Mac OS, and several Linux distributions). Moreover, Docker images are supported by

the majority of Cloud Platforms. Docker provides a tool for defining and running multi-

container Docker applications – Compose. Compose uses a file to describe the services

that compose the distributed application, by identifying aspects like: the images used by

each service, the network configuration behind the services, the dependency between the

services, the data volumes required by the distributed application, etc. Compose allows

to create containers, configure them and the underlying network, and start the distributed

application with a single command.

Figure 3 shows a diagram representing how the current CROSSMINER distributed ap-

plication is structured.

Figure 3 – Diagram of CROSSMINER as a Docker distributed application

Currently, the application consists of the principal Docker images which are available at

[4]:
 Metric-Platform – Image with the components of the Metric Platform and some

metric providers developed in CROSSMINER. This image can be run as different

containers;

 Metric-Platform Database (oss-db) – MongoDB image to store the data of the metric

platform. Currently it runs as one container but may be replaced by a replication or

shared MongoDB cluster if needed;

72 A Boudeffa et al.

 CROSSMINER Admin – a web application developed to administrate the

CROSSMINER platform e.g., to create projects, configure analysis tasks, etc;

 Knowledge Base Service – Image aggregating the components implementing the

Knowledge Base. It is used to run the cross-project analyses and provides the API to

give access computed data;

 Knowledge Base Database (kb-db) – MongoDB image to store the data from the

analyses performed by the Knowledge Base Service.

 DevOps Dashboard [6] – Image with the Perceval tool to process CROSSMINER

data and providing a backend for the DevOps Dashboard. The Perceval backend is an

extension to the Perceval data collection tool that will collect data from the

Knowledge Base and Metric Platform databases using the API REST, and it will

convert it to JSON documents.

6 Conclusion

The CROSSMINER project is an OSS project focus on increasing dependence on open-

source software (OSS) and it permits to take educated decisions. The project is a follow-

up to a previous project called OSSMETER. The complexity of its legacy components

raised challenges related to the integration and the communications among the hetero-

genous built-in components. To handle all these integration issues, we explored some

technologies inspired from microservice architectures to assembly those heterogenous

components into a unified platform and to address the security aspects of the whole plat-

form.

Finally, we adopted a container-based distributed strategy based on the Docker Compose

technology [4] to automate the application deployment.

References

1. Alessandra Bagnato, Konstantinos Barmpis, Nik Bessis, Luis Adrián Cabrera-

Diego, Juri Di Rocco, Davide Di Ruscio, Tamás Gergely, Scott Hansen, Dimitris

S. Kolovos, Philippe Krief, Ioannis Korkontzelos, Stéphane Laurière, Jose Man-

rique Lopez de la Fuente, Pedro Maló, Richard F. Paige, Diomidis Spinellis,

Cedric Thomas, Jurgen J.Vinju: Developer-Centric Knowledge Mining from Large

Open-Source Software Repositories (CROSSMINER). STAF Workshops 2017:

375-384 Marburg (2017).

2. Bruno Almeida, Sophia Ananiadou, Alessandra Bagnato, Alberto Berreteaga Bar-

bero, Juri Di Rocco, Davide Di Ruscio, Dimitrios S. Kolovos, Ioannis Korkont-

zelos, Scott Hansen, Pedro Maló, Nikolaos Drivalos, Richard F. Paige, Jurgen J.

Vinju: OSSMETER: Automated Measurement and Analysis of Open Source Soft-

ware. STAF Projects Showcase 2015: 36-43 L’Aquila (2015).

3. CROSSMINER SCAVA GitHub Repository, last accessed 07/06/2019:

https://github.com/crossminer/scava.

4. CROSSMINER SCAVA-Deployment GitHub Repository, last accessed

07/06/2019: https://github.com/crossminer/scava-deployment/tree/dev

5. CROSSMINER WIKI: https://scava-docs.readthedocs.io/en/latest/, last accessed

07/06/2019.

6. Perceval: https://crossminer.biterg.io/app/kibana#/dashboard/ScavaProject /, last

accessed 07/06/2019.

https://dblp.uni-trier.de/pers/hd/b/Barmpis:Konstantinos
https://dblp.uni-trier.de/pers/hd/b/Bessis:Nik
https://dblp.uni-trier.de/pers/hd/c/Cabrera=Diego:Luis_Adri=aacute=n
https://dblp.uni-trier.de/pers/hd/c/Cabrera=Diego:Luis_Adri=aacute=n
https://dblp.uni-trier.de/pers/hd/r/Rocco:Juri_Di
https://dblp.uni-trier.de/pers/hd/r/Ruscio:Davide_Di
https://dblp.uni-trier.de/pers/hd/g/Gergely:Tam=aacute=s
https://dblp.uni-trier.de/pers/hd/h/Hansen:Scott
https://dblp.uni-trier.de/pers/hd/k/Kolovos:Dimitris_S=
https://dblp.uni-trier.de/pers/hd/k/Kolovos:Dimitris_S=
https://dblp.uni-trier.de/pers/hd/k/Krief:Philippe
https://dblp.uni-trier.de/pers/hd/k/Korkontzelos:Ioannis
https://dblp.uni-trier.de/pers/hd/l/Lauri=egrave=re:St=eacute=phane
https://dblp.uni-trier.de/pers/hd/f/Fuente:Jose_Manrique_Lopez_de_la
https://dblp.uni-trier.de/pers/hd/f/Fuente:Jose_Manrique_Lopez_de_la
https://dblp.uni-trier.de/pers/hd/m/Mal=oacute=:Pedro
https://dblp.uni-trier.de/pers/hd/p/Paige:Richard_F=
https://dblp.uni-trier.de/pers/hd/s/Spinellis:Diomidis
https://dblp.uni-trier.de/pers/hd/t/Thomas:Cedric
https://dblp.uni-trier.de/pers/hd/v/Vinju:Jurgen_J=
https://dblp.uni-trier.de/db/conf/staf/staf2017w.html#BagnatoBBCRRGHK17
https://dblp.uni-trier.de/pers/hd/a/Almeida:Bruno
https://dblp.uni-trier.de/pers/hd/a/Ananiadou:Sophia
https://dblp.uni-trier.de/pers/hd/b/Barbero:Alberto_Berreteaga
https://dblp.uni-trier.de/pers/hd/b/Barbero:Alberto_Berreteaga
https://dblp.uni-trier.de/pers/hd/r/Rocco:Juri_Di
https://dblp.uni-trier.de/pers/hd/r/Ruscio:Davide_Di
https://dblp.uni-trier.de/pers/hd/k/Kolovos:Dimitrios_S=
https://dblp.uni-trier.de/pers/hd/k/Korkontzelos:Ioannis
https://dblp.uni-trier.de/pers/hd/k/Korkontzelos:Ioannis
https://dblp.uni-trier.de/pers/hd/h/Hansen:Scott
https://dblp.uni-trier.de/pers/hd/m/Mal=oacute=:Pedro
https://dblp.uni-trier.de/pers/hd/d/Drivalos:Nikolaos
https://dblp.uni-trier.de/pers/hd/p/Paige:Richard_F=
https://dblp.uni-trier.de/pers/hd/v/Vinju:Jurgen_J=
https://dblp.uni-trier.de/pers/hd/v/Vinju:Jurgen_J=
https://dblp.uni-trier.de/db/conf/staf/ps2015.html#AlmeidaABBRRKKH15
https://github.com/crossminer/scava
https://github.com/crossminer/scava-deployment/tree/dev
https://crossminer.biterg.io/app/kibana#/dashboard/ScavaProject

