
Project Number 732223

D6.5 The CROSSMINER Knowledge Base - Final Version

Version 1.0
28 June 2019

Final

Public Distribution

University of L′Aquila

Project Partners: Athens University of Economics & Business, Bitergia, Castalia Solutions,
Centrum Wiskunde & Informatica, Eclipse Foundation Europe, Edge Hill
University, FrontEndART, OW2, SOFTEAM, The Open Group, University of
L′Aquila, University of York, Unparallel Innovation

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
CROSSMINER Project Partners accept no liability for any error or omission in the same.

© 2019 Copyright in this document remains vested in the CROSSMINER Project Partners.

D6.5 The CROSSMINER Knowledge Base - Final Version

Project Partner Contact Information

Athens University of Economics & Business Bitergia
Diomidis Spinellis José Manrique Lopez de la Fuente
Patision 76 Calle Navarra 5, 4D
104-34 Athens 28921 Alcorcón Madrid
Greece Spain
Tel: +30 210 820 3621 Tel: +34 6 999 279 58
E-mail: dds@aueb.gr E-mail: jsmanrique@bitergia.com
Castalia Solutions Centrum Wiskunde & Informatica
Boris Baldassari Jurgen J. Vinju
10 Rue de Penthièvre Science Park 123
75008 Paris 1098 XG Amsterdam
France Netherlands
Tel: +33 6 48 03 82 89 Tel: +31 20 592 4102
E-mail: boris.baldassari@castalia.solutions E-mail: jurgen.vinju@cwi.nl
Eclipse Foundation Europe Edge Hill University
Philippe Krief Yannis Korkontzelos
Annastrasse 46 St Helens Road
64673 Zwingenberg Ormskirk L39 4QP
Germany United Kingdom
Tel: +33 62 101 0681 Tel: +44 1695 654393
E-mail: philippe.krief@eclipse.org E-mail: yannis.korkontzelos@edgehill.ac.uk
FrontEndART OW2 Consortium
Rudolf Ferenc Cedric Thomas
Zászló u. 3 I./5 114 Boulevard Haussmann
H-6722 Szeged 75008 Paris
Hungary France
Tel: +36 62 319 372 Tel: +33 6 45 81 62 02
E-mail: ferenc@frontendart.com E-mail: cedric.thomas@ow2.org
SOFTEAM The Open Group
Alessandra Bagnato Scott Hansen
21 Avenue Victor Hugo Rond Point Schuman 6, 5th Floor
75016 Paris 1040 Brussels
France Belgium
Tel: +33 1 30 12 16 60 Tel: +32 2 675 1136
E-mail: alessandra.bagnato@softeam.fr E-mail: s.hansen@opengroup.org
University of L′Aquila University of York
Davide Di Ruscio Dimitris Kolovos
Piazza Vincenzo Rivera 1 Deramore Lane
67100 L′Aquila York YO10 5GH
Italy United Kingdom
Tel: +39 0862 433735 Tel: +44 1904 325167
E-mail: davide.diruscio@univaq.it E-mail: dimitris.kolovos@york.ac.uk
Unparallel Innovation
Bruno Almeida
Rua das Lendas Algarvias, Lote 123
8500-794 Portimão
Portugal
Tel: +351 282 485052
E-mail: bruno.almeida@unparallel.pt

Page ii Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

Document Control
Version Status Date

0.1 Document outline 18 January 2019
0.2 First draft 17 March 2019
0.8 Second draft 12 June 2019
0.9 First release 24 June 2019
1.0 Final release 28 June 2019

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page iii

D6.5 The CROSSMINER Knowledge Base - Final Version

Table of Contents

1 Introduction 1

1.1 Summary . 1

1.2 Document Structure . 2

2 Literature Review 4

2.1 Software Similarity . 4

2.2 API Usage Recommendations . 10

2.3 Library Recommendations . 12

2.4 Mining StackOverflow to support software development . 13

2.5 Classification of StackOverflow posts . 14

2.6 Neural Networks in Software Engineering . 14

3 The CROSSMINER Recommender Systems 16

4 Recommendation of project alternatives with similar APIs 18

4.1 Proposed Approach . 18

4.2 Evaluation . 19

5 API function calls and usage patterns recommendation 20

5.1 Overview . 20

5.2 Architecture . 21

5.3 Data Representation . 22

5.4 Similarity Computation . 23

5.5 API function calls recommendation . 25

5.6 API usage patterns recommendation . 26

5.7 Evaluation . 27

5.7.1 Datasets . 27

5.7.2 Methodology . 27

5.8 Result Analysis . 29

6 Third-party libraries recommendation 31

6.1 Overview . 31

6.2 Architecture . 32

6.3 Data Encoder . 33

6.4 Similarity Calculator . 33

Page iv Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

6.5 Recommendation Engine . 33

6.6 Evaluation . 35

6.6.1 Dataset . 35

6.6.2 Evaluation metrics . 36

6.6.3 Evaluation Methodology . 39

6.7 Result Analysis . 40

6.8 Threats to Validity . 46

6.9 Discussions . 47

6.10 Conclusions and Future Work . 47

7 Recommendation of StackOverflow Posts 49

7.1 Overview . 49

7.2 Background and Motivations . 50

7.3 Proposed Approach . 51

7.3.1 Index Creation . 52

7.3.2 Query Creation . 54

7.3.3 Query Execution . 56

7.4 Evaluation . 56

7.4.1 Dataset . 58

7.4.2 User studies . 58

7.4.3 Evaluation metrics . 58

7.4.4 Research questions . 59

7.5 Experimental Results . 59

7.6 Threats to validity . 62

8 Categorization of Relevant API Discussions 63

8.1 Feed-forward Neural Networks . 64

8.2 System Architecture . 66

8.3 Evaluation . 67

8.3.1 Datasets . 67

8.3.2 Evaluation Metrics . 67

8.4 Results . 68

8.5 Threats to validity . 68

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page v

D6.5 The CROSSMINER Knowledge Base - Final Version

9 Mining API Migration Patterns 70

9.1 Use Case . 70

9.2 Proposed Approach . 72

9.2.1 Architecture . 72

9.2.2 Recommending relevant function calls and code snippets 73

9.3 Mining cross-project dependencies to discover API migration samples 74

9.3.1 AETHEREAL . 74

9.3.2 Analysis Results . 76

10 The Knowledge Base 79

10.1 Overview . 80

10.2 Use Cases . 80

10.3 Datasets . 82

10.4 Technology Dependencies . 82

10.5 REST API . 83

10.5.1 Get analyzed projects . 83

10.5.2 Get analyzed project by id . 85

10.5.3 Get projects by metric provider platform id . 86

10.5.4 Search analyzed projects . 86

10.5.5 Add a new GitHub project to the analyzed projects 87

10.5.6 Store developer activity metrics . 88

10.5.7 Get alternatives projects . 89

10.5.8 Get relevant StackOverflow posts . 91

10.5.9 Get third-party libraries . 91

10.5.10 Get API function calls . 92

10.5.11 Get API usage patterns . 94

10.5.12 Get clustered projects . 95

10.5.13 Get cluster containing a particular project . 96

10.5.14 Get migration client pairs examples . 97

10.5.15 Get clients using a particular library version . 98

10.5.16 Get StackOverflow posts related to discussions about API migration 98

10.5.17 Get impact on library evolution . 99

10.5.18 Get useful code snippets to migrate towards a new library version 100

11 Conclusions 102

Page vi Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

Executive Summary

Implementing a new system by mining open source software (OSS) repositories helps reduce development
effort and concurrently increase productivity. Furthermore, as the OSS ecosystem facilitates vibrant expert and
user communities, developers can get practical supports which allow them to fix bugs as well as to find probable
solutions to various issues alongside the development cycle. Nevertheless, to help developers effectively mine
the existing data, it is crucial to equip them with suitable machineries. Under the context of Work Package
6 (WP6), we have been developing recommender systems to assist developers in building their software by
mining OSS forges.

In this deliverable, we present the final implementation of the Knowledge Base designed in Task 6.1. We
address the mandatory recommendations as specified in Deliverable D1.1. By exploiting the graph representa-
tion as well as recommendation engines developed in the previous phases of WP6, we are able to design and
realize important recommendation engines which are capable of providing developers with useful supports
while they are programming. In particular, we implement and integrate into the Knowledge Base the follow-
ing types of recommendations: API function calls and usage patterns, third-party libraries, API migration, and
StackOverflow post classification. Furthermore, we also finalize the tool for recommending StackOverflow
posts.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page vii

D6.5 The CROSSMINER Knowledge Base - Final Version

1 Introduction

Open source software (OSS) allows developers to study, change, and improve the code free of charge. Code
reusing is an intrinsic feature of OSS, and developing a new system by leveraging existing open source com-
ponents reduces development effort, and thus being beneficial to the software life cycle. The benefits resulting
from the reuse of properly selected open source projects are manyfold including the fact that the system be-
ing implemented relies on open source code, “which is of higher quality than the custom-developed code’s
first incarnation” [134]. In addition to source code, also metadata available from different related sources,
e.g., communication channels and bug tracking systems, can be beneficial to the development process if prop-
erly mined [112]. However, without being equipped with suitable machinery, given a plethora of data sources,
developers would struggle to look for and approach the sources that meet their demand, in the hope of trans-
forming them to practical knowledge. Under the circumstances, the problem is not the lack of information but
instead an information overload coming from heterogeneous and rapidly evolving sources. In particular, when
developers join a new project, they have to typically master a huge number of information sources [34] (often
at a short time). In other words, “we are drowning in information but starved for knowledge.”1

In this sense, the deployment of systems which exploit existing data to assist and improve developer experi-
ence is of paramount importance. The realization of techniques and tools to build such systems has attracted a
lot of attention from the research community recently. Research has been performed to understand and predict
software evolution, exploiting the rich metadata available at OSS repositories. This allows for the reduction of
effort in knowledge acquisition and quality gain. The introduction of recommender systems to the domain of
software development brings substantial benefits. A recommender system in software engineering (RSSE) is
defined as “... a software application that provides information items estimated to be valuable for a software
engineering task in a given context” [121]. Among others, recommender systems assist developers in navigat-
ing large information spaces and getting instant recommendations that might be helpful to solve the particular
development problem at hand [96, 113]. Thus, RSSEs aim at giving developers recommendations, which can
consist of different items including code examples, issue reports, reusable source code, possible third-party
components, documentation, etc. In the scope of Work Package 6, we dedicate ourselves to develop various
recommender systems to support developers. In Section 1.1, we summarize the main types of recommenda-
tions which have been defined in the Description of Work (DoW) for Work Package 6. This section also recalls
the results obtained in previous phases of our work package. Section 1.2 brings in the structure of the whole
deliverable.

1.1 Summary

Within Work Package 6, we exploit cutting-edge information retrieval techniques to build recommender sys-
tems for mining software repositories. We develop tools and techniques to assist software developers in im-
plementing their projects by means of an advanced Eclipse-based IDE. The recommendation engines are fed
with metadata curated from different OSS forges and communication channels. Based on the CROSSMINER
mining tools and on previous feedback, developers are able to select open source software and get real-time
recommendations which are summarized as follows.

• find a set of similar OSS projects to the system being developed, with respect to different criteria, e.g.,
external dependencies, or API usage;

• recommend components that similar projects have included, for instance, a list of external libraries [83];

1John Naisbitt, researcher of future studies

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 1

D6.5 The CROSSMINER Knowledge Base - Final Version

• recommend code snippets that show how an API is used in practice. These snippets provide developers
with a deeper insight into the usage of the APIs being included;

• suggest additional sources of information, e.g., technical documents, tutorials, communication channels,
etc., that are relevant to the code being developed, for instance by mining external experiences from
StackOveflow;

• identify API changes and their consequences: changes of libraries will have a certain effect on the de-
pending projects. It is necessary to notify developers and recommend amendments to preserve program
compatibility.

Our work package consists of a unified framework being built on top of a graph representation model [90]
that allows us to compute similarities and incorporate various recommendation techniques. In Deliverable
D6.1, we drafted the first version of the CROSSMINER Knowledge Base. Afterwards, in Deliverable D6.2,
we transformed the relationships among non-human artifacts, e.g., API utilizations, source code, interactions,
and humans, e.g., developers into a mathematically computable format. This representation allows for the cre-
ation of CROSSSIM [90], a versatile tool for computing similarities among OSS projects. Being based on the
infrastructure, a recommender system named CROSSREC for providing software developers with third-party
libraries has been built in Deliverable D6.3 [92]. In this setting, CROSSSIM performs its computation using
third-party libraries as the input features. Furthermore, to provide API function calls and usage patterns recom-
mendation, we developed a context-aware recommender system, i.e., FOCUS [91],[96] where the similarities
among OSS projects are computed by means of CROSSSIM with API function calls as features.

In Deliverable D6.4, we presented two independent tools, i.e., unsupervised and supervised clustering. Firstly,
we exploited CROSSSIM as the software similarity tool to compute similarities among OSS projects and feed as
input of the clustering process. We made use of two algorithms, i.e., K-Medoids and CLARA as the clustering
engine. The algorithms have been chosen since they meet the requirements concerning effectiveness and
efficiency in clustering OSS projects. Secondly, apart from the unsupervised tool, we implemented OSCAN,
a supervised neural network that groups a set of input vectors into clusters. We attempt to cluster OSS projects
by simulating humans’ cognition towards the projects-categories relationship, using the data manually given
by developers. OSCAN is highly advantageous given that labeled data is available for the training process.

The current deliverable, i.e., D6.5 presents the final implementation of the Knowledge Base. We address the
mandatory recommendations as specified in Deliverable D1.1, including recommendation of API function
calls and usage patterns, as well as third-party libraries. Furthermore, we API migration and classification
of StackOverflow posts. Furthermore, we finalize the tool for providing StackOverflow post recommendation
which has been partially solved in D6.3.

1.2 Document Structure

Deliverable D6.5 is structured into the following sections:

• Section 2 presents a literature review on the related work;
• Section 3 brings an overview of the recommender systems conceived within Work Package 6;
• In Section 4, we present the proposed approach for recommending project alternative with similar APIs;
• Section 5 introduces FOCUS, a recommender system for mining API function calls and usage patterns
• Afterwards, in Section 6, a recommender system for providing developers with third-party libraries, i.e.,

CROSSREC is introduced;
• In Section 7, we implement and evaluate SOrec, a recommender system for providing relevant Stack-

Overflow posts, given an input context;

Page 2 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

• Section 8 introduces in detail SCORE, a supervised classifier for categorizing StackOverflow posts;
• Section 9 presents amAdvisor, a recommender system to deal with API breaking changes by suggesting

relevant migration patterns;
• Section 10 provides an exhaustive documentation of the REST API for the Knowledge Base;
• Finally, Section 11 summarizes our work and concludes the deliverable.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 3

D6.5 The CROSSMINER Knowledge Base - Final Version

2 Literature Review

In this section, we summarize related work and associate our contributions to the literature in mining open
source software repositories, discussion channels, as well as the application of recommender systems to tackle
various issues in Software Engineering. In particular, Section 2.1 provides a comprehensive review on software
similarity. Afterwards, we introduce notable studies on the topic of API function calls and third-party library
recommendations in Section 2.2 and in Section 2.3, respectively. Section 2.4 reviews studies related to mining
and usage of StackOverflow posts. Section 2.5 gives a summary of studies concerning the classification of
StackOverflow posts. Finally, Section 2.6 provides an overview of neural networks as well as their application
in Software Engineering.

2.1 Software Similarity

Having access to similar software projects is beneficial to the development process. By looking at a similar
OSS project, developers learn how relevant classes are implemented, and in some certain extent, to reuse
useful source code [131],[155]. Also, recommender systems rely heavily on similarity metrics to suggest
suitable and meaningful items for a given item [38],[100],[131],[138]. As a result, similarity computation
among software and projects has attracted considerable interest from many research groups. In recent years,
several approaches have been proposed to solve the problem of software similarity computation. Many of them
deal with similarity for software systems, others are designed for computing similarities among open source
software projects. Depending on the set of mined features, there are two main types of software similarity
computation techniques [29]:

• Low-level similarity: it is calculated by considering low-level data, e.g., source code, byte code, function
calls, API reference, etc.,

• High-level similarity: it is based on the metadata of the analysed projects e.g., similarities in readme
files, textual descriptions, star events, etc., Source code is not taken into account.

This classification is used throughout this paper as a means to distinguish existing approaches with regards
to the input information used for similarity computation. In this section, we provide a summary on three
techniques for computing similarity among open source projects, i.e., MUDABLUE [42], CLAN [82], and
REPOPAL [155].

Together with a tool for automatically categorizing open source repositories, Garg et al. [42] propose an
approach for computing similarity between software projects using source code. A pre-processing stage is
performed to extract identifiers such as variable names, function names, and to remove unrelated factors such as
comment. With the application of Latent Semantic Analysis (LSA) [67], software is considered as a document
and each identifier is considered as a word. LSA is used for extracting and representing the contextual usage
meaning of words by statistical computations applied to a large corpus of text. In summary, MUDABLUE

works in the following steps to compute similarities between software systems:

(i) Extracts identifiers from source code and removes unrelated content;
(ii) Creates an identifier-software matrix with each row corresponds to one identifier and each column cor-

responds to a software system;
(iii) Removes unimportant identifiers, i.e., those that are too rare or too popular;
(iv) Performs LSA on the identifier-software matrix and computes similarity on the reduced matrix using

cosine similarity.

Page 4 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

MUDABLUE has been evaluated on a database consisting of software systems written in C. The outcomes
of the evaluation were compared against two existing approaches, namely GURU [80], and the SVM based
method by Ugurel et al. [142]. The evaluation shows that MUDABLUE outperforms these observed algorithms
with respect to precision and recall.

McMillan et al. propose CLAN, an approach for automatically detecting similar Java applications by exploit-
ing the semantic layers corresponding to packages class hierarchies [82]. CLAN works based on the document
framework for computing similarity, semantic anchors, e.g., those that define the documents’ features. Seman-
tic anchors and dependencies help obtain a more precise value for similarity computation between documents.
The assumption is that if two applications have API calls implementing requirements described by the same
abstraction, then the two applications are more similar than those that do not have common API calls. The
approach uses API calls as semantic anchors to compute application similarity since API calls contain pre-
cisely defined semantics. The similarity between applications is computed by matching the semantics already
expressed in the API calls.

Using a complete software application as input, CLAN represents source code files as a term-document matrix
(TDM). A TDM is used to store the features of a set of document and it is a matrix where a row corresponds to
a document and a column represents a term [30]. Each cell in the matrix is the frequency that the corresponding
term appears in the document. By CLAN, a row contains a unique class or package and a column corresponds
to an application. SVD is then applied to reduce the dimension of the matrix. Similarity between applications
is computed as the cosine similarity between vector in the reduced matrix. CLAN has been tested on a
dataset with more than 8, 000 SourceForge2 applications and shows that it qualifies for the detection of similar
applications [82].

MUDABLUE and CLAN are comparable in the way they represent software and source code components like
variables, function names or API calls in a term-document matrix and then apply LSA to find the similarity
and to category the softwares. However, CLAN has been claimed to help obtain a higher precision than that
of MUDABLUE as it considers only API calls to represent software systems. As shown later in this paper,
CLAN is more efficient than MUDABLUE as it produces recommendations in a much shorter time.

In contrast to many previous studies that are generally based on source code [42],[76],[82], RepoPal [155] is a
high-level similarity metric and takes only repositories metadata as its input. With this approach, two GitHub3

repositories are considered to be similar if: (i) They contain similar README.MD files; (ii) They are starred by
users of similar interests; (iii) They are starred together by the same users within a short period of time. Thus,
the similarities between GitHub repositories are computed by using three inputs: readme file, stars and the
time gap that a user stars two repositories.

Considering two repositories ri and rj , the following notations are defined: (i) fi and fj are the readme files
with t being the set of terms in the files; (ii) U(ri) and U(rj) are the set of users who starred ri and rj ,
respectively; and (iii) R(uk) is the set of repositories that user uk already starred. There are three similarity
indices as follows:

Readme-based similarity The similarity between two readme files is calculated as the cosine similarity
between their feature vectors fi and fj :

simf (ri, rj) = CosineSim(fi, fj) (1)

2SourceForge: https://sourceforge.net/
3About GitHub: https://github.com/about

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 5

https://sourceforge.net/
https://github.com/about

D6.5 The CROSSMINER Knowledge Base - Final Version

Stargazer-based similarity The similarity between a pair of users uk and ul is defined as the
Jaccard index [57] of the sets of repositories that uk and ul have already starred: simu(uk, ul) =
Jaccard(R(uk), R(ul)). The star-based similarity between two repositories ri and rj is the average simi-
larity score of all pairs of users who already starred ri and rj :

sims(ri, rj) =
1

|U(ri)| · |U(rj)|
∑

uk∈U(ri)
ul∈U(rj)

simu(uk, ul) (2)

Time-based similarity It is supposed that if a user stars two repositories during a relative short period of
time, then the two repositories are considered to be similar. Based on this assumption, given that T (uk, ri, rj)
is the time gap that user uk stars repositories ri and rj , the time-based similarity is computed as follows:

simt(ri, rj) =
1

|U(ri) ∩ U(rj)|
∑

uk∈U(ri)∩U(rj)

1

|T (uk, ri, rj)|
(3)

Finally, the similarity between two projects is the product of the three similarity indices:

sim(ri, rj) = simf (ri, rj)× sims(ri, rj)× simt(ri, rj) (4)

REPOPAL has been evaluated against CLAN using a dataset of 1, 000 Java repositories [155]. Among them,
50 were chosen as queries. Success Rate, Confidence and Precision were used as the evaluation metrics.
Experimental results in the paper show that REPOPAL produces better quality metrics than those of CLAN.

The above mentioned approaches are either low-level or high-level similarity. It is evident that each of these
similarity tools is able to manage a certain set of features. Thus, they can only be applied in prescribed con-
texts, and cannot exploit additional information when this is available for similarity computation. We assume
that combining various input information in computing similarities is highly beneficial to the context of OSS
repositories. In other words, the ability to compute software similarity in a flexible manner is of highly im-
portance. For instance, in the context of the CROSSMINER project, the required project similarity technique
should be flexible enough to enable the development of different types of recommendations as introduced in
Section 1. Thus, we expect a tool being capable of incorporating new features into the similarity computation
without the need of modifying its internal design. To this end, we anticipate a representation model that inte-
grates semantic relationships among various artifacts. The model should be able to consider implicit semantic
relationships and intrinsic dependencies among different users, repositories, and source code by enabling sim-
ilarity applications in different applicative scenarios.

In the next section, we propose a novel approach that attempts to effectively exploit the rich metadata infras-
tructure provided by the OSS ecosystem to compute software similarities. To validate the performance of the
proposed approach, we conduct a thorough evaluation on a real dataset collected from GitHub and we compare
our tool with the three similarity metrics introduced above.

In this section, we review some of the most notable approaches that have been developed to measure the simi-
larity between software systems or OSS projects. These approaches deal with the detection of: (i) similar open
source applications, (ii) similar mobile applications, (iii) software plagiarisms and clones, and (iv) relevant
third-party libraries.

Page 6 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

To detect clone among Android apps, Wang et al. propose WuKong [145] which employs a two-phase process
as follows. The first phase exploits the frequency of Android API calls to filter out external libraries. After-
wards, a fine-grained phase is performed to compare more features on the set of apps coming from the first
phase. For each variable, its feature vector is formed by counting the number of occurrences of variables in
different contexts (Counting Environments - CE). An m-dimensional Characteristic Vector (CV) is generated
using m CEs, where the i-th dimension of the CV is the number of occurrences of the variable in the i-th CE.
For each code segment, CVs for all variables are computed. A code segment is represented by an n×m Char-
acteristic Matrix (CM). For each app, all code segments are modelled using CM, yielding a series of CMs and
they are considered as the features for the app. The similarity between two apps is computed as the proportion
of similar code segments. The similarity between two variables v1 and v2 is computed using cosine similarity
[140],[141] between their feature vectors. Evaluations on more than 100, 000 Android apps collected from 5
Chinese app markets show that the approach can effectively detect cloned apps [145]. CROSSSIM is also able
to deal with low-level features as by WuKong if such features are integrated into the graph.

Lo et al. develop TagSim4, a tool that leverages tags to characterize applications and then to compute similarity
between them [77]. Tags are terms that are used to highlight the most important characteristics of software
systems [150] and therefore, they help users narrow down the search scope. TagSim can be used to detect
similar applications written in different languages. Based on the assumption that tags capture better the intrinsic
features of applications compared to textual descriptions, TagSim extracts tags attached to an application and
computes their weights. This information forms the features of a given software system and can be used to
distinguish it from others. The technique also differentiates between important tags and unimportant ones
based on their frequency of appearance in the analyzed software systems. The more popular a tag across the
applications is, the less important it is and vice versa. Each application is characterized by a feature vector,
and each entry corresponds to the weight of a tag the application has. Eventually, the similarity between two
applications is computed as the cosine similarity [140],[141] between the two vectors. To evaluate TagSim,
more than a hundred thousands of projects have been collected and analyzed [77]. A total of 20 queries were
used to study the performance of the algorithm in comparison with CLAN. The authors also performed a user
study to manually analyze the extent to which two applications are similar. The experimental results show that
TagSim helps achieve better performance in comparison to CLAN.

Inspired by CLAN, Linares-Vásquez et al. develop CLANdroid for detecting similar Android applications
with the assumption that similar apps share some semantic anchors [73]. Nevertheless, in contrast to CLAN,
CLANdroid works also when source code is not available as it exploits other high-level information. By ex-
tending the scope of semantic anchors for Android apps, starting from APK (Android Package) CLANdroid
extracts quintuple features, i.e., identifiers, intents from source code, API calls and sensors from JAR files, and
user permissions from the AndroidManifest.xml5 specification. This file is a mandatory component for any An-
droid app and it contains important information about it. For each feature, a feature-application matrix is built,
resulting in five different matrices. Latent Semantic Indexing is applied to all the matrices to reduce the dimen-
sionality. Afterwards, similarity between a pair of applications is computed as the cosine similarity between
their corresponding feature vectors from the matrix. Users can query for similar apps with a given app by spec-
ifying which feature is taken into consideration. Evaluations have been performed to study which semantic
anchors are more effective [73]. The authors also analyze the impact of third-party libraries and obfuscated
code when detecting similar apps, since these two factors have been shown to have significant impact on reuse
in Android apps and experiments using APKs. The evaluation on a dataset shows that computing similarity
based on API helps produce higher recall. According to the experimental results, the feature sensor is ineffec-
tive in computing similarity. By comparing with a ground-truth dataset collecting from Google Play, the study

4For the sake of clarity, in this deliverable we give a name for the algorithms that have not been originally named
5https://developer.android.com/guide/topics/manifest/manifest-intro.html

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 7

https://developer.android.com/guide/topics/manifest/manifest-intro.html

D6.5 The CROSSMINER Knowledge Base - Final Version

gives some hints on the mechanism behind the way Google Play recommends similar apps. CROSSSIM is rel-
evant to CLANdroid since it can work with low-level features by representing function calls, API calls in the
graph as we already demonstrated in our recent work [94],[96].

With the aim of finding apps with similar semantic requirements, SimApp has been developed to exploit high-
level metadata collected from apps markets [29]. If two apps implement related semantic requirements then
they are seen as similar. Each mobile application is modeled by a set of features, so called modalities. The
following features are incorporated into similarity computation: Name, Category, Developer, Description,
Update, Permissions, Images, Content rating, Size and Reviews. For each of these features, a function is
derived for each of the features to calculate the similarity between applications. The final similarity score for
a pair of apps is a linear combination of the multiple kernels with weights. Through the use of a set of training
data, the optimal weights are determined by means of online learning techniques.

AnDarwin is an approach that applies Program Dependence Graphs to represent apps [33], and feature vectors
are then clustered to find similar apps. Locality Sensitive Hashing is used to find approximate near-neighbors
from a large number of vectors. AnDarwin works according to the following stages: (i) It represents each app
as a set of vectors computed over the app’s Program Dependence Graphs; (ii) Similar code segments are found
by clustering all the vectors of all apps; (iii) It eliminates library code based on the frequency of the clusters;
(iv) Finally, it detects apps that are similar, considering both full and partial app similarity. AnDarwin has been
applied to find similar apps by different developers (cloned apps) and groups of apps by the same developer
with high code reuse (rebranded apps). An evaluation using more than 200, 000 apps from different Android
markets demonstrated that the system can effectively detect cloned apps.

LibRec is a tool that provides developers them with library recommendations to help developers leverage
existing libraries [138]. LibRec suggests the inclusion of libraries that may be useful for a given project using
a combination of rule mining and collaborative filtering techniques. It finds a set of relevant libraries, based
on the current set of libraries that a project already uses. Association rule mining is applied to find similar
libraries that co-exist in many projects to extract libraries that are commonly used together. The component
then rates each of the libraries based on their likelihood to appear together with the currently used libraries.
A collaborative filtering technique is applied to search for top most similar projects and recommends libraries
used by these projects to a given project. Given a project, similarity is computed against all projects and top
similar projects are selected. The libraries used by the top similar projects are used as recommendations based
on a score computed according to their popularity. Considering a set of projects and a set of libraries each
project is characterized by a feature vector using the set of libraries it includes. The similarity between two
projects is the cosine similarity between their feature vectors.

A summary of all the similarity metrics introduced in this section is depicted in Table 1. Most low-level
similarity algorithms attempt to represent source code (and API calls) in a term-document matrix and then
apply SVD to reduce dimensionality. The similarity is then computed as the cosine similarity between feature
vectors. Among others, MUDABLUE, CLAN, and CLANdroid belong to this category. In contrast, high-
level similarity techniques do not consider source code for similarity computation. They characterize software
by exploiting available features such as descriptions, user reviews, and README.MD file. The similarity is
computed as the cosine similarity of the corresponding feature vectors. For computing similarity between
mobile applications, other specific features such as images and permissions are also incorporated. A current
trend in these techniques is to exploit textual content to compute similarity, e.g., in AppRec [16], SimApp
[29], TagSim [77]. A main drawback with this approach is that, same words can be used to explain different
requirements or the other way around, the same requirements can be described using different words [42]. So
it might be the case that two textual contents with different vocabularies still have a similar description or two
files with similar vocabularies contain different descriptions.

Page 8 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D
6.5

T
he

C
R

O
SSM

IN
E

R
K

now
ledge

B
ase

-FinalV
ersion

Source code Metadata

M
U

D
A

B
lu

e
[4

2]

C
L

A
N

[8
2]

C
L

A
N

dr
oi

d
[7

3]

W
uK

on
g

[1
45

]

Si
m

A
pp

[2
9]

A
nD

ar
w

in
[3

3]

Ta
gS

im
[7

7]

L
ib

R
ec

[1
38

]

R
ep

oP
al

[1
55

]

Considered features Descriptions
Dependencies – – – 3 – – – 3 – Set of third-party libraries that a project includes
API Calls 3 3 3 3 – 3 – – – API function calls that appear in the source code of the analyzed projects. They are used to build

term-document matrices and then to calculate similarities among applications
Functions 3 – – – – 3 – – – Functions defined in a project’s source code
Stars – – – – – – – – 3 The GitHub star events occurred for each analyzed projects
Timestamps – – – – – – – – 3 The point of time when a user stars a repository
Statements 3 – – – – – – – – Source code statements
Identifiers 3 – 3 3 – – – – – All artifacts related to source code, such as variable names, function names, package names, etc.
App name – – – – 3 – – – – Name of a mobile app may reveal its functionalities
Descriptions – – – – 3 – – – – The description text of an app
Developers – – – – 3 – – – – All developers who contribute to the development of a software/an app
Readme – – – – 3 – 3 – – Descriptions or README.MD files, used to describe the functionalities of an open source project
Tags – – – – – – 3 – – The tags that are used by OSS platforms, e.g. SourceForge to classify and characterize an OSS

project
Updates – – – – 3 – – – – The newest changes made to the considered applications
Permissons – – 3 – 3 – – – – This feature is available by mobile apps. It specifies the permission of an app to handle data in a

smartphone
Screenshots – – – – 3 – – – – This feature is available by mobile apps. It is a picture representing an app
Contents – – – – 3 – – – – Each app has content rating to describe its content and age appropriateness
Size – – – – 3 – – – – Some similarity metrics assume that two apps whose size is considerably different cannot be

similar
Reviews – – – – 3 – – – – All user reviews for an app are combined in a document
Intents – – 3 – – – – – – For a mobile app, an intent is description for an operation to be performed
Sensors – – 3 – – – – – – In mobile devices, sensors can provide raw data to monitor 3-D device movement or positioning,

or changes in the environment. A set of features can be built from sensors to characterize an app
Used techniques

TDM &
LSA

3 3 3 – – – – – – TDM [30] and LSA [68] are generally used in combination to model the relationships between
API calls/identifiers and software systems and to compute the similarities between them

COS 3 3 3 3 3 – 3 3 3 Cosine similarity [140],[141] is widely used in several algorithms for computing similarities
among vectors

JCS – – – – – 3 – – 3 Jaccard index [57] is used for computing similarity between two sets of elements

Table 1: Summary of the similarity algorithms and their features.

28
June

2019
V

ersion
1.0

C
onfidentiality:Public

D
istribution

Page
9

D6.5 The CROSSMINER Knowledge Base - Final Version

The matching of words in the descriptions as well as source code to compute similarity is considered to be
ineffective as already stated in [82]. To overcome this problem, the application of a synonym dictionary like
WordNet [84] is beneficial. Nevertheless, there is an issue with the approaches like REPOPAL where readme
files are used for similarity computation. Since in general the descriptions for software projects are written
in different languages, the comparison of readme files in different languages should yield dissimilarity, even
though two projects may be similar. SimApp [29] is the only technique that attempts to combine several
high-level information into similarity computation. It eventually applies a machine learning algorithm to learn
optimal weights. The approach is promising, nevertheless it is only applicable in the presence of a decent
training dataset, which is hard to come by in practice.

2.2 API Usage Recommendations

MAPO has been developed to mine API usage patterns from client code projects [157]. The system ana-
lyzes source files to collect API usage information and groups the API methods into clusters. Afterwards, it
mines API usage patterns from the clusters, ranks them according to the similarity with developer context, and
eventually recommends complete API code snippets to developers.

Moreno et al. introduce MUSE, a practical tool to recommend code examples related to a specific function [87].
MUSE parses source code to extract method usage, it simplifies examples and detects clones to group similar
code snippets. Furthermore, it is able to rank recommendation outcomes according to various characteristics,
i.e., reusability, understandability, and popularity.

Wang et al. proposed UP-Miner, aiming at reducing redundancy as well as covering a wide range of API
usage patterns from source code [146]. From an input API method, the technique automatically finds all usage
patterns and returns related code snippets.

Strathcona [53] is a recommendation tool, which analyzes developer’s context from the structural point of view
and suggests a possible implementation related to the task that she is developing. Strathcona uses six heuristics
based on inheritance hierarchy, field types method calls, and object usage in order to build the query. The built
query is then executed on a repository containing all possible usage of the APIs and it is built automatically
from the context. Finally, Strathcona retrieves code examples, which can be navigated by the developer both
graphically and in a textual way.

Fowkes et al. introduce PAM (Probabilistic API Miner), a parameter-free probabilistic approach to mine API
usage patterns [41]. PAM uses the structural Expectation-Maximization (EM) algorithm to infer the most
probable API patterns from client code, which are then ranked according to their probability. PAM outperforms
both MAPO and UP-Miner (lower redundancy and higher precision).

The NCBUP-miner (Non Client-based Usage Patterns) [126] is a technique that identifies unordered API usage
patterns from the API source code, based on both structural (methods that modify the same object) and semantic
(methods that have the same vocabulary) relations. The same authors also propose MLUP [125], which is
based on vector representation and clustering, but in this case client code is also considered. MLUP is used
for mining multi-level API usage patterns, which are clusters of methods that co-exist in a method performing
a specific functionality. As input, the technique takes the source code and extracts the relevant methods of the
considered API. Each API public method is characterized by a vector, where each entry corresponds to a client
method. Clustering techniques are then used to group API methods that are usually used together by projects.

Table 2 provides a summary on different approaches for mining API usage and their corresponding character-
istics.

Page 10 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D
6.5

T
he

C
R

O
SSM

IN
E

R
K

now
ledge

B
ase

-FinalV
ersion

Name/Authors Similarity Computation Clustering Dataset Output
MAPO [157] Class name, Method

name, API call sequences
Data-driven Java projects API usage patterns

UP-Miner [146] SeqSim technique similar
sequences

Two clustering on fre-
quent sequences with
BIDE [147]

C# projects Probabilistic graph of API

CLAMS [60] Longest Common Subse-
quence, Distance matrix

LCS [51], HDBSCAN
[25] techniques AP-TED
for top rank snippets

Client projects from 6
popular Java libraries

API usage patterns

APIRec[88] Association-based model
with fine-grained code
changes

Association-based change
inference model

50 GitHub Java
projects

Most frequent API calls

APIMiner extension[86] Structural similarity
among API

FP-growth with WEKA
tool [49]

Android projects Enhanced documentations

Niu et. al[102] Object usages social net-
work with co-existence
relation

Co-existence relation
with modularity index
method call similarity
with Gamma index

Android project API usage patterns

CodeBroker[151] Latent semantic analysis
[67]

Discourse model, user
model

Java core libraries Three layered information
relevant tasks, signature and
JavaDoc

Table 2: Summary of API usage recommendation techniques.

28
June

2019
V

ersion
1.0

C
onfidentiality:Public

D
istribution

Page
11

D6.5 The CROSSMINER Knowledge Base - Final Version

Niu et al. extract API usage patterns using API class or method names as queries [103]. They rely on the
concept of object usage (method invocations on a given API class) to extract patterns. The approach outper-
forms UP-Miner and Codota,6, a commercial recommendation engine in terms of coverage, performance, and
ranking relevance.

Sourcerer [75] is a code search tool mainly based on Lucene. Source codes are indexed according to the
included keywords and by considering fingerprints, which summarize code snippets in vectors and give in-
formation about the syntactical aspects of the code. Sourcerer maps also the developers of each snippet in a
matrix consisting of developer-document entries. This kind of process gives further information about the de-
velopers who write the code: in particular, Sourcerer can categorize developers with best skills according to
their contributions.

The authors in [78] introduce CodeHow, a code search engine specifically conceived to parse APIs online doc-
umentation by analyzing the user’s query. As the first step, the tool retrieves and parses information coming
from the documentation by applying the most classical text preprocessing techniques, i.e., text normalization,
stop words removal and stemming. Then, CodeHow finds similarities between the user’s query and the API
related to it. To identify the relevant APIs among all retrieved ones, the authors propose the adoption of an in-
formation retrieval technique, called the Extended Boolean Model (EBM), and they make use of ElasticSearch
as the main indexing and searching platform.

We developed FOCUS [96] a recommender system for mining API calls and usage patterns. The system
represents mutual relationships among projects using a tensor and exploits a collaborative-filtering technique
to mine API calls [129]. The main advantage of the system is that it does not depend on any specific set of
libraries to generate API calls. Furthermore, FOCUS scales well with large datasets exploiting the context-
aware collaborative-filtering technique that helps effectively remove irrelevant API function calls.

2.3 Library Recommendations

Teyton et al. introduce LibTic, an approach to identify relevant experts of Java libraries among GitHub devel-
opers by automatically mining software repositories [136]. Thus, LibTic can also be used to identify experts
that can be contacted to ask questions concerning the usage of libraries.

LibFinder is an approach developed by Ouni et al. and it is based on a multi-objective search-based algorithm
for supporting developers in searching for "useful" libraries when they implement a new software system [105].
The authors suggest that embedding library semantics in third-party library recommendation can increase
efficiency [105].

The problem of third-party library recommendation has been well defined by Thung et al. [138]. In this work,
LibRec was proposed to help developers discover existing libraries that may be useful for a given project us-
ing a combination of rule mining and collaborative filtering techniques [131]. Considering a set of projects
P = (p1, p2, ...pm) and a set of libraries L = (l1, l2, ...ln), i.e. ~pi = (Ii(l1), Ii(l2), ..Ii(ln)), where Ii(lr)
is the inclusion of library lr in project pi. Ii(lr) = 1 if lr is used in pi, otherwise Ii(lr) = 0, the similarity
between two projects is computed as the cosine of the angle between the two vectors. Given a project, sim-
ilarity is computed against all projects and the most similar projects are selected. A performance evaluation
was conducted on 500 GitHub projects to validate the proposed hypotheses. LibRec has been considered as
baseline for evaluating the performance of the new approach that we have conceived in CROSSMINER for
recommending libraries as presented in Sec. 6.

6https://www.codota.com/

Page 12 Version 1.0
Confidentiality: Public Distribution

28 June 2019

https://www.codota.com/

D6.5 The CROSSMINER Knowledge Base - Final Version

2.4 Mining StackOverflow to support software development

StackOverflow can be exploited to support coding activities by providing developers with messages and code
snippets therein that are relevant to the query explicitly or implicitly defined by the user. In this deliverable,
we develop SOrec, a tool for finding StackOverflow posts that match with an input code snippet. SOrec
imposes various measures on both the data collection and query phases. Furthermore, to improve efficiency
Apache Lucene [1], an information retrieval library is used to index the textual content and code coming from
StackOverflow. This section reviews related work in mining StackOverflow and associate these studies with
SOrec.

Zagalsky et al. [152] present Example overflow, which allows developers to search for code snippets starting
from provided keywords, which in turn are used by the system for retrieving code snippets from a local SO
dump. Similarly to our approach, the search function is based on Apache Lucene even though the outcome of
Example overflow consists of embeddable code, whereas SOrec is able to retrieve full posts that are related to
the user context.

Ponzanelli et al. [111] propose Seahawk, a tool able to retrieve SO discussions, which are linked to the source
code being developed. The search mechanism exploits code similarity techniques essentially based on TD-
IDF. The SOrec search mechanisms are instead based on different boosting features that are considered when
creating queries and when executing them atop of Apache Lucene.

Prompter [113] has been devised to extend Seahawk by focusing on the query creation phase and on the
model, which is used to rank the retrieved posts. The tool relies on public search engines i.e., Google and Bing
to retrieve SO messages. Further than focusing on the query creation phase, SOrec identifies also different
aspects that are used to properly create data indexes and to accordingly define the queries by exploiting boosting
mechanisms provided by Apache Lucene.

An approach to recommend a ranked list of pairs of SO questions and answers based on the user query con-
sisting of a list of terms has been proposed by de Souza et al. [36]. Furthermore, the approach also allows one
to classify SO posts according to defined labels like how-to, debug corrective, etc. The main difference with
SOrec relies on the way queries are defined. In particular, in SOrec queries consist of the whole developer
context, instead of only lists of terms explicitly defined by the user as in [36].

Rigby and Robilliard [117] propose ACE (Automated Code Extractor) that mines an input SO dump in order to
find relevant elements in the code. ACE relies on a fully text-based analysis mechanism to identify and create
indexes of the so-called salient element in the code. Differently to SOrec, ACE uses island parsers based on a
set of regular expressions to approximate Java qualified statements (i.e., package definitions, class names, and
so on).

StackOverflow data has been analyzed also with the aim of assessing documentation coverage for specific APIs.
For instance, in the empirical study presented in [107] authors show that StackOverflow contains questions and
answers covering 87% of the Android APIs. To perform the analysis, authors conceived a supporting platform
to maintain an API index i.e., a dataset to keep track of the links between retrieved SO posts and related
elements of the API being considered.

In this deliverable, we implement and evaluate SOrec, a recommender system for searching for relevant Stack-
Overflow posts. SOrec distinguishes itself from current approaches that deal with the mining of StackOverflow
as it addresses different phases of the whole searching process, i.e., Index Creation, Query Creation and Query
Execution. To this end, SOrec attempts to effectively exploit the well-defined indexing and searching mecha-
nisms provided by Lucene to increase the exposure of queries to the indexed data. More details of our proposed
approach are presented in Section 7.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 13

D6.5 The CROSSMINER Knowledge Base - Final Version

2.5 Classification of StackOverflow posts

Discussions in online forums contain useful instructions on how to leverage a specific API. However, such
communication is normally dispersed among various threads, and the grouping of similar API discussions into
a single category will free developers from the search effort. In this section, we review some of the most
notable studies that deal with this issue.

Hou and Mo [54] perform an investigation of how well machine learning algorithms can be applied to catego-
rize API discussions into specific topics according to their content. A Naïve Bayes classifier has been exploited
to classify API discussions into API specific topics. Furthermore, the authors also investigated the impacts of
various feature selection methods on classification accuracy, including stop words removal, words splitting.
The approach was evaluated by using three groups of posts, consisting of 46, 158, and 833 documents, respec-
tively. The authors also concluded that the classification performance is largely affected given that documents
can be classified with multi labels.

CASE is an automated classifier that works by caching a subset of terms whose affinity scores to each category
are the highest, and then building a classifier based on the cached terms [158]. CASE considers different inputs
for its computation, i.e., text, code, and the combination of both. Starting from a post, the system performs
some pre-processing steps to convert into a feature vector. First, it parses each post into token, removes stop
words and stems the remaining tokens. Afterwards, CASE represents each post using bag-of-words. To reduce
the number of features, a term cache algorithm was then proposed to select the most representative terms.
CASE has been evaluated using the 3 datasets curated by Hou and Mo [54]. The experiment results show that
CASE achieves accuracy scores of 0.69, 0.77, and 0.96 for the 3 datasets and this means that CASE clearly
outperforms the approach proposed by Hou and Mo [54].

Beyer et al. [15] present an automated classifier using two machine learning algorithms, namely Random Forest
and Support Vector Machines. The obtained model can be used to aid developers in browsing SO discussions
or researchers in building recommenders based on SO. A dataset of 500 StackOverflow posts has been curated
and manually classified into seven categories. The evaluation has been conducted using various experimental
configurations with respect to the representation of the input data. The experimental results show that when
Random Forest is used together with phrases as input data, the proposed models obtain the best classification
performance. In particular, an average precision and recall of 0.88 and 0.87.

In this deliverable, we implement and evaluate SCORE, a system for the automated classification of SO posts
into independent categories (see Section 8). The final aim is to provide developers with posts discussing a same
topic to a given API. This is highly useful since it helps developers quickly approach the set of most relevant SO
posts. We compared SCORE with three state-of-the-art tools, i.e., the ones mentioned above [15],[54],[158],
and we demonstrate that out proposed tool outperforms the baselines.

2.6 Neural Networks in Software Engineering

The ability to learn from labeled data allows neural networks to have a wide range of applications. The work
in [17] presents an overview of neural networks for pattern recognition. A multi-purpose algorithm based
on a single deep convolutional neural network (CNN) for solving various problems, e.g., face detection, face
alignment, smile detection is introduced in [115]. The authors in [154] review different applications of neural
networks also identifying the characteristics that make them suitable for forecasting tasks. The work also
identifies issues related to the selection of number hidden layers as well as the number of neurons.

For classification, neural networks have demonstrated their suitability in various application domains. An
approach to classify individual characteristics in behavioural sciences using a neural network is proposed

Page 14 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

in [116]. The authors in [6] investigate two different types of neural networks for classification, i.e., back-
propagation and probabilistic neural network and find out that only the latter is suitable for the detection of
novel patterns. A series of experiments with convolutional neural networks for sentence-level classification
tasks is reported in [63].

A deep neural network (DNN) has been exploited to find similar software applications [89]. Apart from the
input and output layers, two hidden layers are used to derive the high-level concepts for each project. The two
hidden layers extract features and concepts of the project and then provide the output results in form of an
N -dimension vector. Given an input project, the systems produces an N-dimension vector, where each entry
corresponds to the likelihood of the project being classified to a given category. The proposed approach has
been evaluated by comparing with some standard machine learning approaches, i.e., naive Bayes and classical
neural networks using ten-fold cross-validation. A ground-truth dataset was generated by manually labeling
projects to validate the approach’s outcome. The experimental results show that the DNN approach obtains a
higher accuracy compared with the other approaches as it retrieves almost the same categories with respect to
the labels given by humans.

Le Clair et al. [69] develop a neural text classification technique to deal with the representation of source code.
The approach takes into consideration the fact that low-level details from a project’s code normally do not
match with its high-level features, due to the different programming styles of developers. A word embedding
technique is exploited to assign a single category to a project. Each software project is encoded in a string
that summarizes the project’s name, function name, and content. Then, the string is transformed into a vector
of integer numbers. A word is represented as a vector of integers and it is used to feed a neural network
and to produce categories. After the preprocessing phase, a neural network which is made of three layers is
used to classify the input data. The first layer, so-called Embedding layer, takes as input a word previously
described and produces a matrix, composed by the sequence length times embedding dimensions. Then the
Convolution layer takes as input from the previous layer and assigns a category to a function by analyzing the
sequence of tokens. A long short term memory (LSTM) is used to capture the semantics between the sequence
of tokens. Then the model uses a Hidden layer for learning the LSTM units and understand at which category
they belong. Finally, the output dense layer produces a real value vector with the category.

DeepAPI [47] is a deep-learning method used to generate API usage sequences given a query in natural lan-
guage. The learning problem is encoded as a machine translation problem, where queries are considered the
source language and API sequences the target language. Only commented methods are considered during the
search. The same authors [46] present CODEnn (COde-Description Embedding Neural Network), where, in-
stead of API sequences, code snippets are retrieved to the developer based on semantic aspects such as API
sequences, comments, method names, and tokens.

In this deliverable, we exploit a feed-forward neural network to build SCORE, a supervised classifier to cat-
egorize StackOverflow posts. An evaluation using various datasets demonstrates that the tool is able to learn
from manually classified data and effectively categorize incoming unlabeled data, obtaining a high prediction
performance thus outperforming two baselines.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 15

D6.5 The CROSSMINER Knowledge Base - Final Version

3 The CROSSMINER Recommender Systems

In recent years, recommender systems have gained momentum in various disciplines. For instance, in customer
service systems recommendation techniques are implemented as a means to help users make an appropriate
choice [153]. In the entertainment industry, recommender systems are used to suggest movies or music to
users, according to their personal preferences [31],[38],[99]. To name a few, Netflix [45], Amazon [74], and
LinkedIn [149] are among the most notable online services that launch the recommendation feature, with the
ultimate aim of tailoring services to customers’ needs [104].

In Software Engineering, recommender systems have become popular as they are deployed to provide devel-
opers with resources that are considered to be useful for their current development tasks [43],[92]. This feature
contributes towards the reduction in the time spent to discover and understand artifacts from OSS repositories,
thus fostering re-usability and productivity [121].

Our approach is based on recommender systems that provide recommendations to developers with regards to
their development context. We derive recommendation techniques from the mechanisms implemented for e-
commerce systems [74]. There, given a customer, products that have been purchased by similar customers are
recommended to her [130]. Similarly, given a software project, we recommend artifacts that exist in projects
that are similar to it. A content-based recommender system works by recommending to a developer various
artifacts, e.g., code snippets, API method invocations and external libraries that are similar to the projects being
developed [108]. A collaborative-filtering recommender system recommends artifacts to a developer based on
the artifacts used by developers with similar behaviors [129, 131].

Figure 1 depicts an overview of the approach we have been promoting in the context of the CROSS-
MINER project. We feed a Knowledge Base with data curated from OSS forges. The OSS ecosystem
representer transforms the collected metadata into a mathematically computable format which then serves
as input for the Similarity Calculator and the Recommender systems. The goal is to support the de-
velopment of new software systems by relying on existing and reusable open source components. Such recom-
mendations are produced by mining heterogeneous sources of information including source code repositories,
bug tracking systems, forums, and Q&A systems like StackOverflow [2].

OSS forges

OSS ecosystem representer

Similarity computator

Recommender systems

Knowledge
base

mine feed /
use

Figure 1: The main components underpinning the CROSSMINER recommendation systems.

The development of recommendation providers as shown in Figure 1 has been realized by relying on existing
recommender system techniques. In particular, collaborative-filtering recommender systems (CFRSs) have
been employed to suggest developers additional third-party libraries that should be included in the system
being developed. Meanwhile, to conceive recommendations consisting of API function calls and source code
snippets, we make use of a context-aware recommender system (CARS). Collaborative-filtering recommender
systems work on the premise that “if customers agree about the quality or relevance of some items, then they
will likely agree about other items” [131]. A CFRS exploits a 2-D matrix to represent the relationships between
users and items and computes missing ratings. The CF technique can be applied in mining OSS repositories,

Page 16 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

as long as we can find suitable mappings from the domain of product recommendation. A possible mapping is
as follows, if we consider projects as customers, and libraries as products, then we can recommend third-party
libraries using the CF technique. Instead of recommending products, we recommend third-party libraries to
projects using an analogous mechanism: “if projects share some libraries in common, then they will probably
share other common libraries.”

Mining and Analysis Tools

Data Preprocessing Capturing Context Producing
Recommendations

Presenting
Recommendations

Knowledge Base

Source Code
Miner

NLP
Miner

Configuration
Miner

Cross project
Analysis

OSS forges

Source
Code

Natural
language
channels

Configuration
Scripts

lookup/store

mine

Developer
IDE Knowledge Base

query

recommendations Data
Storage

Data
Storage

Real-time recommendations that serve productivity and quality increase

Developer

Figure 2: A high-level view of the CROSSMINER architecture.

The proposed solution is made up of four main modules as depicted in Figure 2. The Data Preprocessing
module contains tools that extract metadata from OSS repositories. Data can be of different types, such as:
source code, configuration, or cross project relationships. Natural language processing (NLP) tools are also
deployed to analyze developer forums and discussions. The collected data is used to populate a knowledge
base which serves as the core for the mining functionalities. By capturing developers’ activities (Capturing
Context), an IDE is able to generate and display recommendations (Producing Recommendations and
Presenting Recommendations)

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 17

D6.5 The CROSSMINER Knowledge Base - Final Version

4 Recommendation of project alternatives with similar APIs

In this section, we present an approach for recommending projects with similar APIs. Based on the model
for computing similarity among OSS repositories presented in Deliverable D6.2, i.e., CROSSSIM [90], in this
section we derive a technique that allows for finding similar projects with respect to the third-party library
usage, given a specific project.

4.1 Proposed Approach

Computing similarities among software systems is considered to be a difficult task [29],[82]. In addition, the
miscellaneousness of artifacts in OSS repositories as well as their cross relationship makes the similarity com-
putation even more complicated. For recommender systems in general, the ability to measure the similarity
between items plays an important role in obtaining relevant recommendations [48]. Intuitively, for software
mining recommender systems, the measurement of similarities between artifacts, e.g. projects, dependencies,
code snippets, or even developers shall also be a critical factor. Nevertheless, the computation of similarities
between software systems/open source projects in particular has been identified as a thorny issue [82]. Fur-
thermore, considering the miscellaneousness of artifacts in OSS repositories, similarity computation becomes
very complicated as many artifacts and several cross relationships prevail.

To enable both the representation of different OSS projects and the calculation of their similarity, a graph-based
model has been conceived. Specifically, the model has been chosen since it allows for flexible data integration
and facilitates numerous similarity metrics [18]. We consider the community of developers together with OSS
projects, libraries and all mutual interactions as an ecosystem. Graphs are then used for representing different
types of relationships in the OSS ecosystem.

We exploit the tool developed in Task 6.2, i.e., CROSSSIM [90] for this purpose. However, in order to meet the
requirements specific to this type of recommendation, we impose some changes to the original graph. Since
CrossSim offers a flexible representation of the OSS ecosystem, only third-party libraries are used as feature.
Furthermore instead of using isUsedBy we reverse the direction of one edge, resulting in includes. As an ex-
ample, we consider a set of four projects P = {p1, p2, p3, p4} and a set of libraries L = {lib1=junit:junit;
lib2=commons-io:commons-io; lib3=log4j:log4j; lib4=org.slf4j:slf4j-api; lib5=org.slf4j:slf4j-log4j12}. By
observing the pom.xml files7 of the projects in P , we discovered the following inclusions: p1 3 lib1, lib2;
p2 3 lib1, lib3; p3 3 lib1, lib3, lib4, lib5; p4 3 lib1, lib2, lib4, lib5. The graph for the set of projects is depicted
in Figure 3.

We adopt the approach proposed by Di Noia et al. [38] to compute the similarities among OSS graph nodes, as
it has been successfully exploited by many studies to do the same task [22],[61]. Among other relationships,
two nodes in a graph are deemed to be similar if they point to the same node with the same semantic edge. For
instance, the graph in Figure 3 depicts the relationships among 4 projects and 5 third-party libraries. There,
we see that p3 and p4 are highly similar since they both point to three nodes representing lib1, lib4, lib5. This
reflects the actual relationship of the two projects by the view of Software Engineering: they are similar since
they implement common functionalities by using common libraries [82]. By the view of recommendation
algorithms, given a project p, suggested libraries for p should come from the most similar projects to p [104].

Using this metric, the similarity between two project nodes p and q in an OSS graph is computed by considering
their feature sets [38]. Given that p has a set of neighbour nodes (lib1, lib2, .., libn), the features of p are

7The file pom.xml defines all project dependencies with external Maven libraries (https://maven.apache.org/
guides/introduction/introduction-to-the-pom.html)

Page 18 Version 1.0
Confidentiality: Public Distribution

28 June 2019

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html
https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

D6.5 The CROSSMINER Knowledge Base - Final Version

lib1 lib4 lib5

lib2p1

includes

includes p4

in
clu

de
s

includes

in
clu

d
es

includes

lib3 p3

includes

includes

in
cl
u
d
es

in
clu

de
s

p2

in
clu

de
s

includes

Figure 3: Graph representation for projects and libraries

represented by a vector
−→
φ = (φ1, φ2, .., φn), with φi being the weight of node libi. It is computed as the

term-frequency inverse document frequency value as follows:

φi = flibi ∗ log(
|P |
alibi

) (5)

where flibi is the number of occurrence of libi with respect to p, it can be either 0 and 1 since there is a
maximum of one libi connected to p by the edge includes; |P | is the number of projects in the collection; alibi
is the number of projects connecting to libi via the edge includes. According to Eq. 5, node lib1 in Figure 3
has a low weight compared to other nodes since it is pointed by all four project nodes. In practice, this is
comprehensible since junit:junit is a very popular dependency and thus it should have a less important role in
characterizing a project.

Eventually, the similarity between p and q with their corresponding feature vectors
−→
φ = {φi}i=1,..,l and

−→ω = {ωj}j=1,..,m is computed as given below:

sim(p, q) =

∑n
i=1 φi × ωi√∑n

i=1(φi)
2 ×

√∑n
i=1(ωi)

2
(6)

where n is the cardinality of the set of libraries that p and q share in common [38]. Intuitively, p and q are
represented as vectors in an n-dimensional space and Eq. 6 measures the cosine of the angle between the two
vectors.

4.2 Evaluation

The proposed technique is used to find project alternatives with similar APIs, given an input project. Inter-
estingly, it is also applicable to the module for computing project similarity by the third-party library rec-
ommender system, which is going to be detailed later on in this deliverable. Thus, rather than performing
a separate performance evaluation for this technique, we decided to combine it with the one for third-party
library recommendation in Section 6.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 19

D6.5 The CROSSMINER Knowledge Base - Final Version

5 API function calls and usage patterns recommendation

The proliferation of OSS repositories in recent years has substantially changed the way people develop soft-
ware. Developers are free to navigate a large information space to search for and re-use artifacts that benefit
their development tasks. Among other activities, embedding API function calls or concrete usage patterns al-
lows for simplifying integration and thus speeding up the development process. Nevertheless, searching for
suitable APIs to be integrated is an uphill task due to the plethora of information available at several OSS
repositories. We aim at assisting developers in mining relevant API function calls and usage patterns from
open source projects. We built a context-aware collaborative-filtering system that exploits the cross relation-
ships among different artifacts in OSS projects to represent them in a graph and eventually to predict the
inclusion of additional API invocations. An evaluation on a dataset curated from the Maven repository shows
that our proposed approach obtains a good performance with respect to various quality indicators. We believe
that the deployment of a context-aware recommender system to provide APIs recommendation is meaningful
and promising.

5.1 Overview

Third-party libraries are interface to runnable and reusable code snippets, they can be embedded in source
code projects independently from environment code [120]. For software developers, integrating external com-
ponents into source code being developed is a daily routine since this helps accelerate the development process
as well as increase reliability. Rather than programming from scratch, developers look for libraries that im-
plement the desired functionalities and integrate them into their existing projects [92]. For such libraries, API
function calls are the entry point which allows one to invoke the offered functionalities. However, in order to
exploit a library to implement the required feature, programmers need to consult various sources, e.g. API doc-
umentation to see how a specific API instance is utilized in practice. Nevertheless, from these external sources,
there are only texts providing generic syntax or simple usage of the API, which may be less relevant to the cur-
rent development context. In this sense, concrete examples of source code snippets that indicate how specific
API function calls are deployed in actual usage, are of great use [87].

Two major types of API mining methods have been identified [60]. By the first type, a system suggests a
ranked list of API invocations and the programmer exercises her own discretion in choosing suitable function
calls. On one side, this scheme gives more freedom to the integration process, on the other side, it lacks details
of control flow and might be suitable only for skilled developers. By the second type of recommendations,
the developer gets real code snippets that implement specific functionalities and she can directly embed the
most relevant snippet into the current function. Such recommendation is considered to be more practical and
helpful. However, since an API function can be used in different contexts depending on the purposes, simply
recommending a code snippet that contains some API functions may not be the solution, it can be irrelevant to
the context as a whole [157].

Clustering has been considered as the de facto mechanism for finding similar source code snippets, aiming to
remove redundant items [60],[157],[146]. Nevertheless, a substantial amount of redundancy is still witnessed
by approaches that rely on clustering [41]. Furthermore, existing studies seem not to fully exploit the con-
text data on which the developer is working to mine the most relevant API usages. In our view, the current
project together with all API function calls, provide a precise insight into the development context and they
should be properly incorporated into the recommendation process. Within the scope of Work Package 6, we
develop FOCUS, a context-aware collaborative filtering recommender system that mines OSS repositories to
provide developers with API FunctiOn Calls and USage patterns [96]. FOCUS concurrently supports two
functionalities: API function calls recommendation and API usage patterns recommendation.

Page 20 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

FOCUS

1

Developer

7

OSS
Repositories

Ranked list

Data
Encoder

3

Code Parser

2

Knowledge
Base

API function

Similarity
Calculator

5
6

Code Builder

8

Code snippets

4

Recommendation Engine

Figure 4: Overview of the FOCUS architecture.

Our work distinguishes itself from other existing approaches in terms of the following aspects. First, it em-
ploys a new model to represent the mutual relationships in source code. Second, given a project, FOCUS
collaboratively mines API usage from the most similar projects. It attempts to narrow down the search scope
and to focus on only the most relevant API usages by collaboratively filtering out irrelevant items. Further-
more, to the best of our knowledge, existing studies rely heavily on the manual analysis of recommendation
outcome by human to validate performance. Nonetheless, such an analysis is labor intensive, time consuming
and prone to subjective perception [23]. We get rid of a user study and propose an approach to automate the
evaluation process by means of cross validation, splitting a dataset into independent subsets, namely training
data and testing data. In this sense, the main contributions of this chapter are summarized as follows:

• Deploy a context-aware collaborative-filtering technique for recommending API function calls and us-
age patterns;

• Introduce an approach for evaluating the outcomes of API function calls and usage patterns recommen-
dation without relying on a user study;

• Evaluate the performance of the proposed approach on a dataset curated from the Maven repository8.

5.2 Architecture

Different from other existing approaches which normally rely on clustering to find API calls, FOCUS utilizes
a context-aware collaborative-filtering technique to search for invocations from closely relevant projects. The
FOCUS architecture is depicted in Figure 4. By connecting to OSS repositories 1 , the Code Parser 2 ex-
tracts source code projects to obtain relevant metadata. For each project, its source code is also stored to the
database for further retrieval. The Data Encoder 3 gets input metadata and represents it in a mathemat-
ically computable format. The similarities among projects, declarations are computed by the Similarity

8https://mvnrepository.com

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 21

https://mvnrepository.com

D6.5 The CROSSMINER Knowledge Base - Final Version

the customerthe customer this productthis product the contextthe context
buy given

the declarationthe declaration this invocationthis invocation the projectthe project
incorporate given

Product
recommendation

API
recommendation

Should

Should

?

?

Figure 5: Comparison.

Calculator 5 . The Recommendation Engine 6 exploits the similarity scores and generates recommen-
dations. In particular, the API Generator returns a ranked list of invocations 7 , whereas the Code Builder
queries the Knowledge Base to get real source code snippets 8 and recommends to the developer.

The following terms are introduced to pave the way for further presentation:

• Method invocation (or invocation): a function call from an external API, i.e. ik;
• Method declaration (or declaration): a single source code unit, i.e. a function/procedure, that contains

various invocations from different APIs, i.e. dr 3 (ir1, i
r
2, ...i

r
l) to realize a specific functionality;

• Software project (or project): a complete, standalone source code unit that consists of a set of declara-
tions p 3 (d1, d2, ...dn) to perform a particular job.

By a context-aware collaborative-filtering technique, given a customer who needs recommendations on what
additional products should be put into the shopping cart, the intuition is to collaboratively deduce the pres-
ence of prospective items from those that have been purchased by similar customers in comparable contexts
[28]. Here, similar customers and contexts play the role of a filter that helps narrow down the search scope.
Instead of searching in all projects, the search engine only looks for invocations from similar projects, thus
yielding the feature collaborative filtering. To solve the problem of API usage recommendation, an analogous
mechanism is applied. By considering the following mappings: projects–contexts, declarations–customers,
and invocations–products, we are able to transform the model applied in products recommendation into a so-
lution for recommending API usages. Intuitively, as illustrated in Figure 5, we simulate the situation when a
customer (a declaration) wonders if she (it) should buy (incorporate) a product (an invocation) given a concrete
context (the current project). Given an active declaration, we search for prospective invocations from those in
similar declarations belonging to comparable projects.

5.3 Data Representation

Figure 6 depicts an example with the Java code snippets of a method declaration named clone(). For a
project, FOCUS works on the basis of declarations and invocations. In the first place, it is necessary to directly
extract those artifacts from source code. We chose Rascal M3 [56] since it allows to parse various types of
input data. Given a project, the tool is used to extract relevant declarations and invocations, i.e. those that
come from third-party libraries.

For each declaration or invocation, Rascal M3 returns the full name of data type for all the parameters.
Though this seems trivial at first glance, it is useful since it helps distinguish invocations with same name,
but containing different types of input parameters. The metadata extracted for the method introduced in Fig-
ure 6 is depicted in Figure 7. The declaration is represented as ClientRequestImpl/clone(javax.ws.-
rs.core.MultivaluedMap) by Rascal M3.

Page 22 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

private static MultivaluedMap<String, Object> clone(MultivaluedMap<String, Object> md) {

MultivaluedMap<String, Object> clone = new OutBoundHeaders();

for (Map.Entry<String, List<Object>> e : md.entrySet()) {

clone.put(e.getKey(), new ArrayList<Object>(e.getValue()));

}

return clone;

}

Figure 6: Method declaration clone().

java/util/Iterator/next()

com/sun/jersey/core/header/OutBoundHeaders/OutBoundHeaders()

java/util/Iterator/hasNext()

java/util/Set/iterator()

java/util/ArrayList/ArrayList(java.util.Collection)

javax/ws/rs/core/MultivaluedMap/entrySet()

javax/ws/rs/core/MultivaluedMap/put(java.lang.Object,java.lang.Object)

java/util/Map$Entry/getValue()

Figure 7: Metadata extracted from clone().

From the extracted metadata, we represent the relationships among declarations and invocations using a user-
item matrix. In this matrix, each row represents a declaration and each column represents an invocation. A
cell is set to 1 if the declaration in the corresponding row contains the invocation in the column, otherwise
it is set to 0. As an example, Figure 8 shows the user-item matrix of project p1 with 4 declarations, i.e.
p1 3 (d1, d2, d3, d4) and 4 invocations, i.e. (i1, i2, i3, i4).

i 1 i 2 i 3 i 4

d1 1 0 1 1
d2 0 1 1 0
d3 1 0 0 1
d4 0 1 0 0

Figure 8: Representation of the relationship between declarations and invocations

To capture the intrinsic relationships among various projects, declarations and invocations, we come up with
a 3-D user-item-context matrix. For example, Figure 9 depicts a set of three OSS projects P = (pa, p1, p2)
representing by three slices with 4 declarations and 4 invocations in total. Project p1 has already been intro-
duced in Figure 8 and for the sake of readability, the column and row labels are removed from all the slices in
Figure 9. There, pa is the active project and it has an active declaration. Active here means the artifact, e.g.
project, declaration, being considered/developed. Both p1 and p2 are complete projects and called background
data since they are already available and serve as a base for the recommendation process. In practice, it is ex-
pected that we can store as much complete projects as possible since the more background data we have, the
higher is the possibility we are able to mine relevant invocations.

5.4 Similarity Computation

By exploiting the collaborative-filtering technique, the presence of additional invocations is deduced from the
most similar projects. Given an active declaration in an active project, it is essential to find a set of similar

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 23

D6.5 The CROSSMINER Knowledge Base - Final Version

1 1 0 0

0 1 0 1

0 0 1 1

1 0 0 1

1 0 1 1

0 1 1 0

1 0 0 1

0 1 0 0

0 0 1 1

0 1 1 1

1 0 0 1

? ? 1 1

Active project (pa)

Similar project (p1)

Similar project (p2)

w=sim(pa,p1)=0.8

w=sim(pa,p2)=0.3

Active declaration

Similar declaration

Similar declaration

Figure 9: 3-D matrix representation of the project-declaration-invocation relationship.

projects, and then most similar declarations in those similar projects. To compute similarities, we exploit the
graph representation to model the relationships among projects and invocations introduced in [90]. We employ
a similar representation proposed in Section 4, however using a weighted directed graph. Each node in the
graph represents either a project or an invocation, if project p contains invocation i, then there is a directed
edge from p to i. The weight for an edge p→ i represents the number of invocations i that occur in project p.
Figure 10 depicts the graph for the set of projects introduced in Figure 9. For instance, pa has 4 declarations and
all of them have i4 as an invocation. As a result, the edge pa → i4 has a weight of 4. In the graph, a question
mark represents missing information, since for the active declaration in pa, it is not clear if invocations i1 and
i2 also belong to it or not.

i2 i3

pa

?

p1

32

p2

2

1

i1

? 2

3

i4

4 2

3

Figure 10: Graph representation of projects and invocations.

The similarity between two graph nodes p and q is computed by considering their feature sets [38]. Given that
p has a set of neighbour nodes (i1, i2, .., il), the features of p are represented by a vector

−→
φ = (φ1, φ2, .., φl),

Page 24 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

with φk being the weight of node ik. It is computed as the term-frequency inverse document frequency value
as follows:

φk = fik ∗ log(
|P |
aik

) (7)

where fik is the number of occurrence of ik with respect to p, it is the weight of the edge p → ik; |P | is the
number of projects in the collection; aik is the number of projects connecting to ik. Eventually, the similarity
between two projects p and q with their corresponding feature vectors

−→
φ = {φk}k=1,..,l and−→ω = {ωj}j=1,..,m

is computed as given below:

simα(p, q) =

∑n
t=1 φt × ωt√∑n

t=1(φt)
2 ×

√∑n
t=1(ωt)

2
(8)

The similarities among method declarations are calculated using the Jaccard similarity index as given below:

simβ(d, e) =
|F(d)⋂F(e)|
|F(d)⋃F(e)| (9)

where F(d) and F(e) are the sets of invocations of declarations d and e, respectively.

For instance, in Figure 9 there is an active project pa with an active declaration located at the bottom of the
matrix, marked with a rectangle. By performing the similarity computation, we obtain simα(pa, p1) = 0.8
and simα(pa, p2) = 0.3. Furthermore, by using Eq. 9 we find two similar declarations to the active one, and
they are also marked with a rectangle in p1 and p2. The similar projects and declarations are used to compute
a score for the missing cells. We are going to describe this process in the next section.

5.5 API function calls recommendation

In Figure 9, the active project pa already includes three declarations, and the developer is working on the fourth
declaration which corresponds to the last two-dimensional matrix. pa consists of only two invocations, repre-
sented as the last two columns of the matrix, the cells with the value of 1. The first two cells are marked with a
question mark (?), indicating that it is not clear whether these two invocations should also be incorporated into
pa. This simulates a real development scenario where the developer just started working on a new function, she
has added two function calls and now expects recommendations on additional invocations. This is the point
where FOCUS comes into play. The recommendation engine attempts to predict which invocations the ac-
tive declaration should include by computing the missing ratings in the corresponding slice (two-dimensional
matrix) by means of the following formula [28]:

rd,i,p = rd +

∑
e∈topsim(d)(Re,i,p − re) · simβ(d, e)∑

e∈topsim(d) simβ(d, e)
(10)

Equation 10 is used to compute a real score for the cell representing method invocation i in declaration d of
project p; topsim(d) is the set of top similar declarations of d; simβ(d, e) is the similarity between d and
declaration e, computed using Eq. 9; rd and re are average ratings of d and e, respectively. Re,i,p is understood

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 25

D6.5 The CROSSMINER Knowledge Base - Final Version

as the combined rating of declaration d for invocation i in all similar projects. It is computed as given below
[28]:

Re,i,p =

∑
q∈topsim(p) re,i,q · simα(p, q)∑

q∈topsim(p) simα(p, q)
(11)

where topsim(p) is the set of top similar projects of p; simα(p, q) is the similarity between p and a similar
project q, computed using Eq. 8. Equation 11 implies that more weight is given to project with a higher
similarity. That means the combined rating for a cell in the active project is more affected by those from the
most similar projects. In practice, it is reasonable since given a project, its similar projects seem to contain
more relevant API function calls than less similar projects. Using Eq. 10 we are able to compute all the missing
ratings in the active project and obtain a ranked list of invocations with scores in descending order. The list is
then provided to the developer as recommendations.

5.6 API usage patterns recommendation

Using FOCUS The ranked list of items provided by FOCUS is suggested as the outcome of the recommen-
dation engine. However, it is up to developers to decide how those invocations shall be included. On one side,
this scheme gives developers freedom to proceed with the integration process. On the other side, it does not
provide enough details to realize a runnable method. In this sense, this type of recommendations might be suit-
able only for resourceful developers. Thus, to further facilitate the development activities, we also implement
a tool for recommending real code snippets.

From the ranked list of recommendations, the top-N items are selected and used as query to search the database
for relevant declarations. The Jaccard index is used to compute similarity between a set of query items and a
declaration represented by metadata consisting set of invocations stored in the Knowledge Base (see Eq. 9).
For each query, we search for declarations that contain as many of the invocations in the query as possible.
Eventually, the original source code corresponding to the matched metadata is retrieved from the Knowledge
Base and recommended to the developer.

Code Parser

3

CLAMS

Matching

Developer

Clustering

4

5

Query

Results

SIMIAN

Developer‘s code

2

OSS
Repositories

API usage patterns

6

1

Figure 11: API usage patterns recommendation using a combination of CLAMS and Simian.

Page 26 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

Using CLAMS and Simian To further enrich the Knowledge Base with various recommendation options,
we propose an approach to suggest API usage patterns. The process applied to generate usage patterns is shown
in Figure 11. Open source projects are scraped and used as input for the Code Parser which then extracts
metadata. From this data, CLAMS [60] is applied to find API usage patterns. As input for the recommendation
process, the context where the developer is working on (represented as a file containing source code) is fed to
the system. Using Simian9, the code is matched against the patterns generated by CLAMS to find the most
similar patterns. After this phase, a ranked list of usage patterns is presented to the developer.

This recommendation tool has been successfully integrated into the Knowledge Base and is available as a
REST API.

5.7 Evaluation

Performing a user study has been accepted as the de facto method to validate an API usage recommendation
tool [87, 102, 157]. Nevertheless, such a user study is not only cumbersome but also highly susceptible to
errors and individual perception. We introduce a validation approach that automates the evaluation by relying
solely on data. We simulate a real developer at different stages of the development process on a dataset curated
from OSS repositories beforehand. The following subsections explain the evaluation in more detail.

5.7.1 Datasets

A set of 3.600 jar files was randomly collected from the Maven repository10 and named as Dataset#1. The
Data Parser is used to extract relevant metadata from the projects. However, declarations that contain less
than 8 invocations are discarded. Our assumption is that declarations with a low number of invocations are
not helpful and shall not be considered. We checked Dataset#1 manually and noticed that many invocations
originate from a same project, i.e. they differ only in their version numbers. For instance, ant-1.6.5.jar and ant-
1.9.3.jar are actually different versions of project ant. The collaborative-filtering technique works well given
that highly similar projects exist, since it just “copies” invocations from similar methods in the very similar
projects (see Eq. 10). Since too similar projects may introduce a bias against the recommendation process,
we decided to create a second dataset. From Dataset#1, for projects with same prefix but different version
numbers, we randomly selected only one among them and removed all the others. The removal results in a
dataset consisting of 1.600 and we named it Dataset#2. Evaluation is performed on both datasets to see how
well FOCUS recommends API invocations with respect to different input data.

5.7.2 Methodology

By using the datasets, we are able to validate the usefulness of the tool without resorting to a manual analysis of
the recommendation outcome. A dataset is split into training data and testing data and ten-fold cross validation
is conducted to validate the performance of FOCUS [32]. In particular, the dataset is split in N independent
sets, N-1 sets are used for training and 1 for test. The experiment is repeated 10 times, each using a different set
for test. The results are averaged over N. This scheme allows us to perform evaluation even on larger datasets.

Table 3 gives an example of recommendation results provided by FOCUS. On the left side of the table, there
are all invocations of an active declaration. We keep only one invocation as testing data and take out the others

9https://www.harukizaemon.com/simian/
10https://mvnrepository.com/

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 27

https://www.harukizaemon.com/simian/
https://mvnrepository.com/

D6.5 The CROSSMINER Knowledge Base - Final Version

Invocations Rank FOCUS

G
ro

un
d-

tr
ut

h

org.json4s.package$.JObject() 1 scala.collection.immutable.List.map(scala.Function1,scala-
.collection.generic.CanBuildFrom)

org.json4s.native.JsonParser$$anonfun$1$$anon-
funorgjson4s$native$JsonParser$$anonfun$$reverse-
$1$2/2(org.json4s.native.JsonParser$$anonfun$1)

2 scala.collection.immutable.List$.canBuildFrom()

scala.collection.immutable.List.reverse() 3 org.json4s.JsonAST$JArray.arr()
scala.collection.immutable.List.map(scala.Function1,sca-
la.collection.generic.CanBuildFrom)

4 scala.Option.isEmpty()

org.json4s.JsonAST$JObject$.apply(scala.collection.immu-
table.List)

5 scala.collection.immutable.Map$.apply(scala.collection.Seq)

org.json4s.JsonAST$JArray$.apply(scala.collection.immu-
table.List)

6 org.json4s.package$MappingException.MappingException(ja-
va.lang.String)

org.json4s.JsonAST$JArray.arr() 7 scala.collection.mutable.StringBuilder.StringBuilder()
scala.collection.immutable.List$.canBuildFrom() 8 org.json4s.package$.JObject()
org.json4s.package$.JArray() 9 java.lang.Object.equals(java.lang.Object)

Te
st

in
g org.json4s.JsonAST$JObject.obj() 10 org.json4s.JsonAST$JObject$.apply(scala.collection.imm-

utable.List)

Table 3: Example of recommendation results.

and use as ground-truth data. On the left side of table, there are top-10 items recommended by FOCUS. Among
10 retrieved items, 5 of them are found in the ground-truth data. The example shows that FOCUS is able to
retrieve relevant invocations, given that only one invocation is available as input data.

We simulate different stages of a real development process to study if the system is applicable, considering
a programmer who is developing a software project p. At the point of consideration, the developer already
finished a number of method declarations δ, and she is now working on the active declaration da. For this
function, the developer has just finished writing a specific number of invocations, let’s say π, and she has to
complete da. The two parameters δ, π are used to stimulate different stages of the development process. In
practice, δ is low at an early stage and increases over the course of time. From a recommender system point
of view, we expect to provide the developer with suitable suggestions that match the context well in various
phases.

To thoroughly evaluate the performance of our proposed approach, we utilize ten-fold cross validation [65]. A
dataset is split into 10 equal parts, i.e. folds, and an evaluation is conducted in 10 rounds. In each round of
validation, nine folds are used for training and the remaining fold is for testing. Given a testing project, we
call the number of method declarations as #dec and we conduct a preliminary evaluation by considering the
following configurations:

Configuration Conf#1: δ = #dec/2-1, π = 1. One declaration is used as testing data, only half of the re-
maining declarations are used as training data and the other half are removed. For the testing declaration, only
one invocation is provided as input for recommendation, and the rest is used as ground-truth data. This con-
figuration mimics a scenario when the developer is at an early stage of the development process and therefore,
only limited context data is available for feeding the recommendation engine.

Configuration Conf#2: δ = #dec-1, π = 1. One method declaration is selected as testing data, all
the remaining declarations are used as training data. Similar to Conf#1, by the testing declaration only one
invocation is kept and all the others are taken out to use as ground-truth data. This represents the stage when
the developer almost finishes implementing the project.

It is expected that the proposed system can recommend items that eventually match with those stored as ground-
truth data.

Page 28 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

1 5 10 15 20
40.00

50.00

60.00

70.00

80.00

90.00

100.00

72.30

82.80
86.40

88.10 89.20

72.80

82.70
86.40

87.90 89.00

of items (N)

P
er
ce
n
ta
ge

(%
)

Conf#1 Conf#2

(a) Success rate for Dataset#1

1 5 10 15 20
40.00

50.00

60.00

70.00

80.00

90.00

100.00

49.40

64.60

69.30
71.60

73.30

50.10

65.40

70.10
72.20

74.30

of items (N)

P
er
ce
n
ta
ge

(%
)

Conf#1 Conf#2

(b) Success rate for Dataset#2

Figure 12: Success rate.

5.8 Result Analysis

Figure 12(a) and Figure 12(b) depict the success rate obtained for different cut-off values, i.e. N =
{1, 5, 10, 15, 20} for both configurations Conf#1 and Conf#2. We investigate the outcome by each dataset, i.e.
Dataset#1 and Dataset#2 separately. Interestingly, there are no big differences in success rate between
two configurations for all values of N . This demonstrates that FOCUS is able to generate relevant recommen-
dations also when only limited context data is available. By comparing the two figures we see that FOCUS
produces better matches given that more similar projects are available, as in Dataset#1 there exist projects
with different version numbers.

For a small N , i.e. N = 1, that means when the developer expects a very brief list of recommendations,
the system is still able to provide matches. For example, with Dataset#1, the success rates of Conf#1
and Conf#2 are 72.30% and 72.80%, respectively. Meanwhile, the outcome by Dataset#2 is much lower
for both configurations with N = 1, the success rates of Conf#1 and Conf#2 are 49.40% and 50.10%,
respectively. This suggests that the performance of FOCUS improves considerably, given that more similar
projects are available.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Conf#1 Conf#2

Recall

P
re

c
is

io
n

(a) Precision and recall for Dataset#1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

Conf#1 Conf#2

Recall

P
re

c
is

io
n

(b) Precision and recall for Dataset#2

Figure 13: Accuracy.

Next, we investigate the accuracy of both configurations by varying the cut-off value N from 1 to 30 to get
Precision@N and Recall@N and sketch the Precision-Recall curves as shown in Figure 13(a) and Fig-
ure 13(b). Considering Dataset#1, we witness the same trend as by success rate, since there are no big
distinctions between accuracies for the configurations with all cut-off values N . Only a small difference in the

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 29

D6.5 The CROSSMINER Knowledge Base - Final Version

accuracy of Conf#1 and Conf#2 can be seen in Dataset#1. With this dataset, Conf#2 has a better accuracy
as the corresponding curve is closer to the top right corner. It is understandable since by Conf#2, there is more
background data available for recommendation.

The experimental results show that FOCUS recommends API function calls with high success rates. Never-
theless, the performance of FOCUS needs to be further studied through additional experiments considering
various configurations. This is considered as a future work and we will be back to fully investigate the use
cases in Deliverable D6.5.

Page 30 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

6 Third-party libraries recommendation

In OSS repositories, information piles up along with the development activities by developers as well as the
interaction among users, committers, projects. Source code, project history, and communication archives are
among the main artifacts that add up to the accumulations of information. A store of such kind leads to
several well-defined issues, e.g. information overload, information heterogeneity, context-sensitive technical
information, and software evolution [121].

To facilitate the development activities, programmers frequently consult data available at OSS repositories to
look for reusable artifacts such as source code [137], API documentation [112], or API elements [121]. Among
others, finding and reusing third-party libraries are activities that programmers regularly perform during the
development phase. Third-party libraries are highly advantageous to the development activities since they
provide programmers with several tailor-made functionalities [71]. Instead of programming from scratch, one
only needs to search for libraries that implement the desired functionalities and embed into the existing code
[121]. In many Android apps, third-party libraries are a staple element [79], a recent study shows that sub-
packages from external libraries account for 60% of code in Android software [145].

Nevertheless, due to the heterogeneity of resources and their corresponding dependencies, developers need
to spend a lot of effort to search for relevant items [121]. Despite the necessity, very little work has been
conducted concerning the techniques that facilitate the search for suitable libraries from OSS repositories.
Most of the related studies address the issue of finding code snippets [137] or API function calls [139]. To
the best of our knowledge, LibRec [138] is among the most advanced techniques for library recommendation
to support OSS developers. It was designed to find relevant libraries, based on the current set of items that a
project already includes. LibRec has been demonstrated to be able to recommend project libraries with a high
success rate. However, as shown later in this chapter, the performance of the approach can be improved with
respect to different quality metrics.

6.1 Overview

We developed CROSSREC, a framework that exploits Cross Projects Relationships among Open Source
Software Repositories to build a Recommender System. With regards to the rich metadata infrastructure avail-
able at OSS repositories, we represent the cross relationships among them using the graph model, so as to
compute similarities among various artifacts. We propose a novel approach utilizing a collaborative-filtering
technique [131] to recommend third-party libraries to support OSS developers. Originally, the technique was
developed for e-commerce systems to exploit the relationships among users and products to predict the miss-
ing ratings of prospective items [74],[105]. The technique is based on the premise that “if users agree about
the quality or relevance of some items, then they will likely agree about other items” [131]. Our approach
is derived from this to solve the problem of library recommendation. Instead of recommending goods or ser-
vices to customers, we recommend third-party libraries to projects using an analogous mechanism: “if projects
share some libraries in common, then they will probably share other common libraries.” In a nutshell, we work
towards the search for an appropriate answer for the question: “Which third-party libraries should I further
include in my current project?” Thus, CROSSREC aims at supporting software developers who have already
included some libraries in the new projects being developed, and expect to get recommendations on which ad-
ditional libraries should be further incorporated (if any). To this end, the main contributions of this chapter are
as follows:

• Introducing a representation model to describe the relationship among projects and third-party libraries
in OSS repositories and to compute similarities;

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 31

D6.5 The CROSSMINER Knowledge Base - Final Version

• Building a collaborative-filtering recommender system to assist software developers with the selection
of suitable third-party libraries;

• Proposing a set of metrics for the measurement of quality of suggestions provided by a library recom-
mender system. Besides success rate, we consider also accuracy, sales diversity, novelty as they have
been widely utilized in evaluating recommender systems [99],[121];

• Performing an empirical study on the performance of CROSSREC and LibRec with a dataset of 1.200
GitHub Java projects utilizing the above mentioned quality metrics.

6.2 Architecture

In this section the CROSSREC approach is presented. It provides a library recommendation functionality,
which is meaningful to open source software developers since it allows them to search for third-party libraries
that may be useful for their current project. The architecture of CROSSREC is shown in Figure 14 and consists
of the software components supporting the following activities:

• Representing the relationships among projects and libraries retrieved from existing repositories;
• Computing similarities to find projects, which are similar to that under development;
• Recommending libraries to projects using a collaborative-filtering technique.

CrossRec

Similarity
Calculator

Recommendation
Engine

2

3 Developer

Data
Encoder

4

OSS
Repositories

5

Recommended
items

6

1

Request for
recommendations

Figure 14: CROSSREC Architecture.

In particular, as shown in Figure 14, the developer interacts with the system by sending a request for rec-
ommendations. The request contains a list of libraries that are already included in the current project.
The Data Encoder collects background data from OSS repositories, represents them in a mathematically
computable format, which is then used as a base for other components of CROSSREC. The Similarity
Computation module calculates similarities among projects to find the most similar ones to the given project.
The Recommendation Engine gets the list of top-k similar projects and executes recommendation tech-
niques to generate a ranked list of top-N libraries. Finally, the recommendations are sent back to the developer.
Background data can be collected from different OSS platforms like GitHub11, Eclipse12, BitBucket13. The
current version of CROSSREC supports data extraction from GitHub, even though the support for additional
platforms is already under development.

11GitHub https://www.github.com
12Eclipse https://projects.eclipse.org
13BitBucket https://www.bitbucket.com

Page 32 Version 1.0
Confidentiality: Public Distribution

28 June 2019

https://www.github.com
https://projects.eclipse.org
https://www.bitbucket.com

D6.5 The CROSSMINER Knowledge Base - Final Version

The source code implementing CROSSREC is available for download at [39]. In the following, the components
Data Encoder, Similarity Calculator, and Recommendation Engine are singularly described.

6.3 Data Encoder

A recommender system for online services is based on three key components, namely users, items and ratings
[104, 129]. A user-item ratings matrix is built to represent the mutual relationships among the components.
Specifically, in the matrix a user is represented by a row, an item is represented by a column and each cell
in the matrix corresponds to a rating given by a user for an item [104]. For library recommendation, instead
of users and items, there are projects and third-party libraries, and a project may include various libraries to
implement desired functionalities.

We derive an analogous user-item ratings matrix to represent the project-library inclusion relationships, de-
noted as 3. In this matrix, each row represents a project and each column represents a library. A cell in the
matrix is set to 1 if the library in the column is included in the project specified by the row, otherwise it is set
to 0. For the sake of clarity and conformance, we still denote this as a user-item ratings matrix throughout this
document.

For explanatory purposes, we refer to the set of projects introduced in Section 4. There is a set of
four projects P = {p1, p2, p3, p4} together with a set of libraries L = {lib1=junit:junit; lib2=commons-
io:commons-io; lib3=log4j:log4j; lib4=org.slf4j:slf4j-api; lib5=org.slf4j:slf4j-log4j12} and the following in-
clusions: p1 3 lib1, lib2; p2 3 lib1, lib3; p3 3 lib1, lib3, lib4, lib5; p4 3 lib1, lib2, lib4, lib5. Accordingly, the
user-item ratings matrix built to model the occurrence of the libraries is depicted in Figure 15.

lib
1

lib
2

lib
3

lib
4

lib
5

p1 1 1 0 0 0
p2 1 0 1 0 0
p3 1 0 1 1 1
p4 1 1 0 1 1

Figure 15: An example of a user-item ratings matrix to model the inclusion of third-party libraries.

6.4 Similarity Calculator

The Recommendation Engine of CROSSREC works on the basis of an analogous user-item ratings matrix. To
provide inputs for this module, the first task of CROSSREC is to perform similarity computation to find the
most similar projects to a given project. We adopt the approach presented in Section 4 as the mechanism for
computing similarities among projects with respect to the included third-party libraries.

6.5 Recommendation Engine

The representation using a user-item ratings matrix allows for the computation of missing ratings [104, 4].
Depending on the availability of data, there are two main ways to compute the unknown ratings, namely
content-based [108] and collaborative-filtering [85] recommendation techniques. The former exploits the
relationships among items to predict the most similar items. The latter computes the ratings by taking into
account the set of items rated by similar customers. A collaborative-filtering recommender system suggests

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 33

D6.5 The CROSSMINER Knowledge Base - Final Version

products that customers similar to the customer being considered have already purchased. There are two main
types of collaborative-filtering recommendation: user-based [156] and item-based [129] techniques. As their
names suggest, the user-based technique computes missing ratings by considering the ratings collected from
similar users. Alternatively, the item-based technique does the same task by using the similarities among items
[32]. In a recent work [93], we exploit user-based and item-based collaborative-filtering (CF) techniques to
build a book recommender system. In contrast to many existing studies which state that the item-based CF
technique outperforms the user-based CF technique [24, 59, 106], we found out that there is no distinct winner
between them. Moreover, we confirm that the performance of a CF recommender system may be good with
regards to some quality metrics, but not to some others.

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ? ∗ ∗ ?

q1
q2
q3
p

Figure 16: Computation of missing ratings using the user-based collaborative-filtering technique.

In the context of CROSSREC, the term rating is understood as the occurrence of a library in a project and com-
puting missing ratings means to predict the inclusion of additional libraries. The project that needs prediction
for library inclusion is called the active project. By the matrix in Figure 16, p is the active project and an as-
terisk (∗) represents a known rating, either 0 or 1, whereas a question mark (?) represents an unknown rating
and needs to be predicted.

Thanks to the availability of the cross relationships as well as the possibility to compute the similarities among
OSS projects by means of the graph representation, in our work we exploit the user-based collaborative-filtering
technique as the engine for recommendation [55, 156]. Given an active project p, the inclusion of libraries in p
can be deduced from projects that are similar to p. In particular, the user-based collaborative-filtering technique
predicts a missing rating by considering the most similar projects to p. The computation is summarized as
follows [24]:

• Compute the similarities between the active project and all projects in the collection;
• Select top-k most similar projects;
• Predict ratings by means of those collected from the most similar projects.

The rectangles in Figure 16 imply that the row-wise relationships between the active project p and the similar
projects q1, q2, q3 are exploited to compute the missing ratings for p. The following formula is used to predict
if p should include l (or p 3 l) [104]:

rp,l = rp +

∑
q∈topsim(p)(rq,l − rq) · sim(p, q)
∑

q∈topsim(p) sim(p, q)
(12)

where rp and rq are the average rating of p and q, respectively; q belongs to the set of top-k most similar
projects to p, denoted as topsim(p). For a testing project p, rp is equal to 1 since the ratings for all testing
libraries are 1. sim(p, q) is the similarity between the active project and a project q, and it is computed using
Equation 8.

Page 34 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

Data Collection

Dataset

Split ten-fold

Training data

Split libs

Success rate
Calculation

Testing data

Accuracy
Calculation

Sales Diversity
Calculation

Novelty
Calculation

Similarity
Computation

Recommendation Ranked List

Ground-truth libs

Testing libs

Comparison

Data Preparation Recommendation Outcome Evaluation

Figure 17: Evaluation Process.

CROSSREC has been designed as a flexible framework and it can integrate different similarity metrics as well
as recommendation engines into its core. The current implementation of CROSSREC supports the technique
presented in Section 4 as the similarity computation technique and the user-based collaborative-filtering mech-
anism as the recommendation engine. However, it is feasible to incorporate other similarity algorithms as
well as recommendation techniques as long as they are suitable to work on the metadata available in OSS
repositories.

In order to evaluate the performance of CROSSREC, we defined and applied the evaluation process shown in
Figure 17. In particular, through private communications, the authors of LibRec provided us with its source
code implementation, thus allowing us to execute it directly. Using the available implementation, we conducted
a comprehensive evaluation on LibRec and CROSSREC to see if and how well they are able to suggest suitable
third-party libraries. The activities of the evaluation process shown in Figure 17 and the artifacts that were
produced during its execution are discussed in the following.

6.6 Evaluation

In the following, we describe the planning of our evaluation, whose goal is to evaluate the performance of
CrossRec, and to compare it with the state-of-the-art approach LibRec.

6.6.1 Dataset

By means of the GitHub API14 we collected a dataset consisting of 1, 200 Java projects. Among these projects,
only 7 of them have been forked from other projects. Such original projects have been excluded from the
dataset as their forked ones share highly similar libraries, and this may introduce bias in the recommendation
outcomes. We represent the distribution of projects with respect to the number of forks, commits and pull re-
quests in Figure 18. Most projects have a low number of pull requests, i.e., lower than 100, however many

14GitHub REST API v3: https://developer.github.com/v3/

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 35

https://developer.github.com/v3/

D6.5 The CROSSMINER Knowledge Base - Final Version

of them have a large number of forks and commits. Forking is a means to contribute to the original reposito-
ries [58]. Furthermore, there is a strong correlation between forks and stars [20]. A project with a high number
of forks means that it gets attention from the OSS community. In this sense, having many forks can be consid-
ered as a sign of a well-maintained and received project. Meanwhile, as commits have an impact on the source
code [10], the number of commits is also a good indicator of how a project has been developed. We mined
dependency specification by means of code.xml or .gradle files.15 Figure 19(a) and Figure 19(b) provide
a summary of the dataset. Although the figures look quite similar, they convey completely different informa-
tion: Figure 19(a) gives an overview on the distribution of libraries across the projects. Most of the libraries,
i.e., 12, 962, are used by a small number of projects, whereas only 10 libraries are extremely popular by be-
ing included in more than 200 projects. By carefully investigating the dataset, we also see that most projects
contain a small number of dependencies, i.e., 48% of the projects include less than 20 libraries and just 15%
of them include more than 100 libraries. The number of dependencies a project includes is depicted in Figure
19(b). Most projects contain a small number of dependencies: 580 projects include less than 20 libraries and
180 projects include more than 100 libraries.

Figure 18: The projects and their number of forks, commits and pull requests.

6.6.2 Evaluation metrics

We introduce a set of metrics used for evaluating the outcomes of a recommender system in the context of
mining OSS repositories [92]. Given a query, the outcome of the recommendation process is a ranked list
of items that are considered to be relevant for the query. For instance, a system that recommends third-party
libraries for a given project returns a list in descending order of similarity scores corresponding to libraries

15The files pom.xml and with the extension .gradle are related to management of dependencies by means of
Maven (https://maven.apache.org/) and Gradle (https://gradle.org/), respectively.

Page 36 Version 1.0
Confidentiality: Public Distribution

28 June 2019

https://maven.apache.org/
https://gradle.org/

D6.5 The CROSSMINER Knowledge Base - Final Version

[0-10]

[10-20]

[20-50]

[50-75]

[75-100]

[100-200]

>200

1 10 100 1000 10000 100000

12962

280

164

37

18

26

10

of libraries

#
 o

f
p

ro
je

c
ts

(a) The distribution of libraries in projects

[0-20] [20-50] [50-100] [100-200] [200-500] >500
0

100

200

300

400

500

600

700

580

303

137
110

63

7

of libraries

#
 o

f
p

ro
je

c
ts

(b) The number of libraries included in projects

Figure 19: A summary of the dataset.

Library Frequency
1 junit:junit 969
2 org.slf4j:slf4j-api 473
3 log4j:log4j 369
4 com.google.guava:guava 306
5 commons-io:commons-io 298
6 org.slf4j:slf4j-log4j12 275
7 commons-lang:commons-lang 227
8 commons-codec:commons-codec 215
9 org.mockito:mockito-core 213
10 javax.servlet:servlet-api 204

Table 4: Most frequent libraries in the considered dataset.

[138]. To validate the performance of a recommender system, we need a training and a testing dataset [32].
The former is used to build the model whereas the latter is used to validate the outcome. Considering a project
that needs library recommendation, the graph model is used to compute similarities and then to find most k
similar projects. The outcome of the recommendation is a ranked list of third-party libraries. Normally, a
developer pays attention only to the top-N items. We use k and N as parameters for further evaluations.

We recall the following metrics that can be used to evaluate the performance of a recommender system in the
context of mining software repositories given the presence of training and testing datasets. First, for a clear
presentation of the metrics considered during the outcome evaluation, the following notations are defined:

• N is the cut-off value for the list of recommended items and k is the number of neighbour projects
considered for the recommendation process;

• For a testing project p, the ground-truth dataset is named as GT(p);
• REC(p) is the top-N items recommended to p. It is a ranked list in descending order of real scores,

with RECr(p) being the library in the position r;
• If a recommended item i ∈ REC(p) for a testing project p is found in the ground truth of p (i.e., GT(p)),

hereafter we call this as a library match or hit.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 37

D6.5 The CROSSMINER Knowledge Base - Final Version

Using this notation, the metrics utilized to measure the recommendation outcomes are explained below. Among
others, we consider success rate [138], accuracy [82], sales diversity, and novelty the most suitable metrics for
evaluating a recommender system in mining OSS repositories [121].

Success rate Given a set of P testing projects, this metric measures the rate at which a recommender system
can return at least a match among top-N recommended items for every project p ∈ P [138]. The metric is
formally defined as follows:

success rate@N =
countp∈P (

∣∣GT (p)⋂(∪Nr=1RECr(p))
∣∣ > 0)

|P | (13)

where the function count() counts the number of times that the boolean expression specified in its parameter is
true.

Accuracy Given a list of top-N items, precision@N, recall@N, and normalized discounted cumulative gain
are utilized to measure the accuracy of the recommendation results.

Precision@N is the ratio of the top-N recommended items belonging to the ground-truth dataset:

precision@N(p) =

∑N
r=1 |GT (p)

⋂
RECr(p)|

N
(14)

Recall@N is the ratio of the ground-truth items appearing in the N items [35, 38, 99]:

recall@N(p) =

∑N
r=1 |GT (p)

⋂
RECr(p)|

|GT (p)| (15)

Normalized Discounted Cumulative Gain: Precision and recall reflect well the accuracy, however they neglect
ranking sensitivity [11]. nDCG is an effective way to measure if a system can present highly relevant items on
the top of the list:

nDCG@N(p) =
1

iDCG
·
N∑

i=1

2rel(p,i)

log2(i+ 1)
(16)

where iDCG is used to normalize the metric to 1 when an ideal ranking is reached.

Sales Diversity In e-commerce systems, sales diversity is the ability to improve the coverage as well as
the distribution of products across customers [99, 144]. In the context of mining software repositories, sales
diversity means the ability of the system to suggest to projects as much items, e.g. libraries, code snippets, as
possible, as well as to disperse the concentration among all the items, instead of focusing only on a specific set
of them [121].

Catalog coverage measures the percentage of items recommended to projects:

coverage@N =

∣∣∪p∈P ∪Nr=1 RECr(p)
∣∣

|I| (17)

where I is the set of all items available for recommendation and P is the set of projects.

Page 38 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

Entropy evaluates if the recommendations are concentrated on only a small set or spread across a wide range
of items [114]:

entropy = −
∑

i∈I

(
#rec(i)

total

)
ln

(
#rec(i)

total

)
(18)

where I is the set of all items available for recommendation, #rec(i) is the number of projects getting i as
a recommendation, #rec(i) = countp∈P (

∣∣(∪Nr=1RECr(p)) 3 i
∣∣), i ∈ I , total denotes the total number of

recommended items across all projects.

Novelty Novelty measures if a system is able to expose items to projects. Expected popularity complement
(EPC) is utilized to measure novelty and is defined as follows [143, 144]:

EPC@N =

∑
p∈P

∑N
r=1

rel(p,r)∗[1−pop(RECr(p))]
log2(r+1)∑

p∈P
∑N

r=1
rel(p,r)
log2(r+1)

(19)

where rel(p, r) = |GT (p)⋂RECr(p)| represents the relevance of the item at the r position of the top-N list
to project p; pop(RECr(p)) is the popularity of the item at the position r in the top-N recommended list.
It is computed as the ratio between the number of projects that receive RECr(p) as recommendation over
the number of projects that are recommended items among the most often recommended ones. Equation 19
implies that the more unpopular items a system recommends, the higher the EPC value it obtains and vice
versa.

6.6.3 Evaluation Methodology

To thoroughly study the performance of LibRec and CROSSREC, we applied ten-fold cross validation, which
has been identified as among the best methods for model selection [65]. Essentially, by referring to Figure
17, the dataset is divided into 10 equal parts, named folds hereafter and numbered from 1 to 10, with each
consisting of 120 projects. For each recommender system, the validation has been conducted in ten rounds
(see the activity Split ten-fold). For each round i, foldi is used as testing data and the remaining nine
folds foldj with j 6= i, 1 ≤ i, j ≤ 10 are used as training data [32] (see Split libs). The training data is
used to compute similarity and serves as the background data for recommendation, while the testing data is
used to validate the model [5].

When a fold is used as testing data, library recommendation is conducted for all of its 120 projects. For every
testing project p, a half of its libraries are randomly taken out and saved as ground truth data, let’s call them
gt, which will be used to validate the recommendation outcomes. The other half are used as testing libraries,
which are called te, and serve as input for Similarity Computation and Recommendation. This mimics
a real development process where a developer has already included some libraries in the current project, i.e.
te and she awaits some recommendations, that means additional libraries to be incorporated. A recommender
system is expected to provide her with the other half, i.e. gt.

By each validation round, we use the same folds for testing and training by both systems. Also for a testing
project, the same sets of testing libraries and ground-truth libraries are used for experiments on LibRec and
CROSSREC. This is to make sure that exactly the same condition is applied in both systems, so as to precisely
validate their performance. The list of the projects together with the corresponding folds are publicly available
in GitHub [39].

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 39

D6.5 The CROSSMINER Knowledge Base - Final Version

The testing libraries are provided as input to compare the similarity between the testing project and all the other
1.080 projects in the training data. For CROSSREC, a graph is built and similarity is computed using Eq. 8,
whereas LibRec computes similarities as the cosine similarity between feature vectors [138]. After this phase,
for each testing project there is a ranked list of projects from which the top-k most similar ones are selected to
feed as inputs for the Recommendation Engine, which in turn predicts the ratings by computing a real score
for each library following Eq. 12. For each testing project, the recommendation outcome is a Ranked List
of libraries which are provided together with the ground-truth data as inputs for the Comparison module to
compute the quality metrics.

By performing the evaluation with the consideration of the quality metrics previously introduced, we aim at
addressing the following research questions:

• RQ1: Does CrossRec obtain a better success rate compared to LibRec? As success rate was used as the
only evaluation metric for LibRec [138], we exploit it to compare directly the performance of CrossRec
with that of LibRec.

• RQ2: How well can LibRec and CrossRec recommend third-party libraries in terms of accuracy, sales
diversity, and novelty? It is our firm belief that success rate cannot fully reveal the recommendation
quality. Thus, we also employ other quality indicators to painstakingly evaluate the performance of
both approaches. Apart from success rate, we investigate if the approaches obtain a good performance
in terms of accuracy, diversity and novelty [100],[118].

• RQ3: What are the reasons for the performance difference between LibRec and CrossRec? We are
interested in understanding the rationale behind the performance differences between the two systems.

In the next section, the outcomes of the performed evaluation are analyzed and the answers for such research
questions are also given.

6.7 Result Analysis

Before addressing our research questions, we illustrate the recommendations of LibRec and CROSSREC

through a running example, i.e., the project peakgames/libgdx-stagebuilder hosted on GitHub. As shown in
Table 5, such a project uses 16 libraries, which are listed on the left-hand side of the table. Among 16 included
libraries, 8 items are extracted and used as the ground-truth libraries that are shown in gray. The remaining
8 items are used as inputs for similarity computation and recommendation, or query. The output obtained by
each system is a ranked list in descending order of recommendations with real scores. We took the first 10 li-
braries, removed the scores and kept only the order of the list to present the results as in Table 5. The top-10
items are then matched against the ground-truth data. The column Freq. reports the frequency of occurrence
of the recommended library, over the set of 1, 200 projects. In this case, LibRec only matches junit:junit
with the ground true (which is obviously used by many projects for testing purposes) but, as we can notice,
CROSSREC matches 4 more projects with the ground truth.

Both LibRec and CROSSREC obtain a success rate@10=1.0. However, CROSSREC has a better recall@10
compared to LibRec as it returns more relevant items (see Eq. (15)). Furthermore, among the matches by
CROSSREC, 4 items appear in the top rows of the ranked list, indicating that CROSSREC recommends with
high precision@N (see Eq. (14)). LibRec returns only 1 relevant item, which means that both precision@N and
recall@N are considerably lower compared to those of CROSSREC. Furthermore, LibRec tends to suggest very
popular libraries: 6 out of 10 items recommended by LibRec are used by more than 200 projects. For instance,
besides junit:junit, the second highest frequency item is org.slf4j:slf4j-api (473/1, 200). By performing an

Page 40 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

peakgames/libgdx-stagebuilder Recommendations
Libraries Rank LibRec Freq. CROSSREC Freq.

Q
ue

ry

org.jetbrains.kotlin:kotlin-stdlib 1 junit:junit 969 com.badlogicgames.gdx:gdx-platform 3
com.google.android:android 2 commons-io:commons-io 298 com.badlogicgames.gdx:gdx-backend-

lwjgl
3

com.google.gwt:gwt-user 3 org.slf4j:slf4j-api 473 com.badlogicgames.gdx:gdx-backend-
android

3

net.sf.kxml:kxml2 4 org.json:json 65 junit:junit 969
org.mockito:mockito-all 5 org.slf4j:slf4j-simple 103 org.slf4j:slf4j-api 473
com.badlogicgames.gdx:gdx-backend-gwt 6 commons-lang:commons-

lang
227 org.slf4j:slf4j-jdk14 42

net.peakgames.libgdx:stagebuilder-core 7 xmlpull:xmlpull 4 com.google.guava:guava 306
com.badlogicgames.gdx:gdx 8 org.slf4j:slf4j-log4j12 275 com.moribitotech:mtx-core 1

G
ro

un
d-

tr
ut

h

net.peakgames.libgdx:stagebuilder-
extensions

9 com.google.guava:guava 306 com.moribitotech:mtx 1

com.google.gwt:gwt-servlet 10 org.slf4j:slf4j-jdk14 42 com.google.gwt:gwt-servlet 27
com.badlogicgames.gdx:gdx-platform — — — — —
com.badlogic.gdx:gdx-backend-ios — — — — —
com.binarytweed:quarantining-test-runner — — — — —
com.badlogicgames.gdx:gdx-backend-lwjgl — — — — —
com.badlogicgames.gdx:gdx-backend-
android

— — — — —

junit:junit — — — — —

Table 5: Recommendation results (matching with ground truth in bold face) for peakgames/libgdx-
stagebuilder.

investigation on the outcome of all queries, we realize that LibRec usually recommends very popular items.
The reasons for such differences are explained later on in this section.

Four out of five items recommended by CROSSREC have a low frequency of occurrence. For instance, the first
item in the ranked list is com.badlogicgames.gdx:gdx-platform and this library is included in only 3/1, 200
projects. Referring to Figure 6.6.1, it is evident that the top 3 items belong to the long tail, i.e., they are
extremely unpopular since each is used by only 3 projects. However, they turn out to be useful as all of them
match those stored as ground-truth data. In contrast to some existing studies which choose to recommend only
popular items to developers [87],[112], we see that popularity is a good indicator for selecting a library. This
implies that the novelty of a ranked list is important: a system should be able to recommend libraries that are
novel [27], i.e., those that have been rarely seen. In this sense, we expect that CROSSREC can produce good
outcomes, not only in terms of success rate and accuracy, but also sales diversity and novelty.

In summary, for the explanatory example, CROSSREC obtains a comparable success rate, but better accuracy
and novelty than LibRec. This also confirms that success rate is not sufficient for evaluating the recommenda-
tion outcomes. A good recommender system is the one that can maintain a trade-off by improving diversity,
novelty but still retaining a good accuracy [114]. Consequently, it is necessary to investigate if this trade-off
is guaranteed by LibRec and CROSSREC, and this is done in the next sub-sections by considering the whole
dataset discussed in the previous section.

The answers for the research questions of the performed evaluation are presented in the following:

RQ1: Does CrossRec obtain a better success rate compared to LibRec?

To answer this question, we performed a series of experiments using different combinations of number of
recommended libraries i.e., N , and number of neighbour projects exploited in the recommendation phase i.e.,
k. Varying N means changing the length of the recommendation list, whereas increasing k means considering
more neighbour projects for recommendation.

As success rate was used as the only evaluation metric for LibRec [138], we exploit it to compare directly the
performance of CROSSREC with that of LibRec. To answer this question, we performed a series of experiments

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 41

D6.5 The CROSSMINER Knowledge Base - Final Version

5 10 15 20 25

0.600

0.800

1.000

1.200

0.876
0.862 0.868 0.863 0.868

0.903
0.931 0.929 0.926 0.929

of neighbours (k)

su
cc
es
s
ra
te
@
5

LibRec CrossRec

(a) Success rate@5, k={5,10,15,20,25}

5 10 15 20 25

0.600

0.800

1.000

1.200

0.864 0.864 0.867 0.865 0.863

0.945 0.956 0.950 0.954 0.955

of neighbours (k)

su
cc
es
s
ra
te
@
1
0

LibRec CrossRec

(b) Success rate@10, k={5,10,15,20,25}

1 3 5 7 10

0.600

0.800

1.000

1.200

0.647

0.813

0.865

0.901
0.925

0.697

0.879

0.919
0.939

0.956

of recommended libs (N)

su
cc
es
s
ra
te
@
N

LibRec CrossRec

(c) Success rate@{1,3,5,7,10}, k=10

1 3 5 7 10

0.600

0.800

1.000

1.200

0.673

0.819

0.868
0.896

0.925

0.736

0.881

0.924 0.937
0.953

of recommended libs (N)

su
cc
es
s
ra
te
@
N

LibRec CrossRec

(d) Success rate@{1,3,5,7,10}, k=20

Figure 20: Success rate.

using different combinations of number of recommended libraries i.e., N , and number of neighbor projects
exploited in the recommendation phase i.e., k. Varying N means changing the length of the recommendation
list, whereas increasing k means considering more neighbour projects for recommendation.

Figure 20(a) shows the success rate@5 for k={5, 10, 15, 20, 25}. As can be seen there, the success rates ob-
tained by CROSSREC are always superior to those of LibRec. The maximum success rate@5 of LibRec is
0.876, whereas CROSSREC obtains success rates being greater than 0.903 for all configurations, with 0.931
being the maximum value. Figure 20(b) shows the success rate@10, for this setting, LibRec gains a compara-
ble performance for N = 5. Meanwhile, CROSSREC gets a slight improvement in its performance compared
to the case with N = 5. It is evident that CROSSREC outperforms LibRec in all test configurations. Figure
20(a) and 20(b) imply that changing the number of neighbour projects k does not make a big difference in their
match rate as success rate@N is stable towards k for both systems.

Next, we investigate the success rate with regards to N . We consider a small number of recommended items,
i.e., N = {1, 3, 5, 7, 10}. In practice, this means that the developer wants to see a short list of recommended
libraries. In the first experiment, k is fixed to 10 and the outcomes are depicted in Figure 20(c). For N = 1,
LibRec gets a success rate of 0.647 which is lower than the corresponding value 0.697 produced by CROSS-

Page 42 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

Success Rate Accuracy Sales Diversity Novelty
N Success Rate Precision Recall Coverage Entropy EPC
3 0.02 1.58e-16 5.41e-08 0.0005 6.50e-05 4.33e-05
5 0.02 1.35e-24 9.10e-12 0.001 6.50e-05 4.33e-05

10 0.17 1.07e-21 9.12e-12 0.003 4.33e-05 1.52e-04
15 0.002 1.10e-14 – 0.003 6.50e-05 2.06e-04

Table 6: Wilcoxon rank sum test adjusted p-values for N={3,5,10,15}, k=10.

Success Rate Accuracy Sales Diversity Novelty
N Success Rate Precision Recall Coverage Entropy EPC
3 0.70 (l) 0.18 (s) 0.12 (n) 0.92 (l) 0.96 (l) 1.00 (l)
5 0.74 (l) 0.23 (s) 0.16 (s) 0.86 (l) 0.98 (l) 1.00 (l)

10 0.93 (l) 0.22 (s) 0.16 (s) 0.80 (l) 1.00 (l) 0.94 (l)
15 0.58 (l) 0.17 (s) – 0.80 (l) 0.98 (l) 0.90 (l)

Table 7: Cliff’s d results for N={3,5,10,15}, k=10. Labels in parenthesis indicate the magnitude
(n:negligible, s:small, l:large).

REC. A success rate of 0.697 implies that CROSSREC can supply relevant recommendations to the developer
at an encouraging match rate, even when she expects only an extremely brief list. Once k is changed from
10 to 20, both systems have a slight increase in success rate@1 as depicted in Figure 20(d). However for
other values of N , there are almost no changes in success rate. To further observe this behavior, we conducted
more experiments with an increasing k, e.g., k = {50, 60, 100}. Nevertheless, the outcomes of these experi-
ments are omitted from the paper due to space limitation. We noticed that considering more similar projects
for recommendation does not improve success rate.

Last, but not least, the second column of Table 6 and of Table 7 report Wilcoxon rank sum test adjusted p-
values and Cliff’s d, respectively for the comparison of LibRec and CROSSREC in terms of success rate, using
k = 10 and N = {3, 5, 10, 15}. As the tables indicate, the differences are always statistically significant and
in favor of CROSSREC (effect size is positive), with a large effect size.

In summary, we see that CROSSREC significantly outperforms LibRec in all considered test configurations
concerning success rate, with a large effect size. The recommendation time for a fold (120 projects) is
relatively faster for CROSSREC (3s) than for LibRec (20s).

RQ2: How well can LibRec and CrossRec recommend third-party libraries in terms of accuracy, sales diver-
sity, and novelty?

Accuracy: to represent accuracy, we vary N (the cut-off value for the list of items to be recommended) from
1 to 30 to get precision@N and recall@N [99]. The rationale behind the selection of 30 as the maximum
cut-off value is that LibRec normally produces a short list of recommendations, ranging from 35 to 50 items.
The Precision-Recall curves (PRCs) for all 10 rounds of validation and different values of k are depicted in
Figure 21(a) ÷ 22(b). Since a PRC closed to the upper right corner represents a better accuracy [38], we see
that with LibRec, changing the number of neighbour k almost makes no difference in its accuracy. Meanwhile
by CROSSREC, an increase of k brings a slightly better accuracy for some testing folds, however the gain
is marginal. It is evident that for all pieces of testing data, CROSSREC always produces a superior accuracy
compared to that of LibRec.

Sales Diversity: the catalog coverage scores for LibRec and CROSSREC are depicted in Table 8. The maximum
coverage values are 4.594 and 5.897 for LibRec and CROSSREC, respectively. According to Eq. (17), a higher

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 43

D6.5 The CROSSMINER Knowledge Base - Final Version

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LibRec, k=10 LibRec, k=20 CrossRec, k=10 CrossRec, k=20

Recall

P
re

c
is

io
n

(a) Fold 1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LibRec, k=10 LibRec, k=20 CrossRec, k=10 CrossRec, k=20

Recall

P
re

c
is

io
n

(b) Fold 2

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LibRec, k=10 LibRec, k=20 CrossRec, k=10 CrossRec, k=20

Recall

P
re

c
is

io
n

(c) Fold 3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LibRec, k=10 LibRec, k=20 CrossRec, k=10 CrossRec, k=20

Recall

P
re

c
is

io
n

(d) Fold 4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LibRec, k=10 LibRec, k=20 CrossRec, k=10 CrossRec, k=20

Recall

P
re

c
is

io
n

(e) Fold 5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LibRec, k=10 LibRec, k=20 CrossRec, k=10 CrossRec, k=20

Recall

P
re

c
is

io
n

(f) Fold 6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LibRec, k=10 LibRec, k=20 CrossRec, k=10 CrossRec, k=20

Recall

P
re

c
is

io
n

(g) Fold 7

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LibRec, k=10 LibRec, k=20 CrossRec, k=10 CrossRec, k=20

Recall

P
re

c
is

io
n

(h) Fold 8

Figure 21: Accuracy: precision@N and recall@N, k={10,20}.

Page 44 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LibRec, k=10 LibRec, k=20 CrossRec, k=10 CrossRec, k=20

Recall

P
re

c
is

io
n

(a) Fold 9

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LibRec, k=10 LibRec, k=20 CrossRec, k=10 CrossRec, k=20

Recall

P
re

c
is

io
n

(b) Fold 10

Figure 22: Accuracy: precision@N and recall@N, k={10,20}.

score means a better coverage. In this sense, the recommendations generated by CROSSREC cover a wider
spectrum of libraries than those by LibRec for both configurations, i.e., k = 10 and k = 20, using different
cut-off values N . Table 9 shows the entropy for LibRec and CROSSREC. Equation (18) suggests that a low
entropy value represents a better distribution of items, therefore the recommendations by CROSSREC have a
much better distribution than those obtained by LibRec. For example, for the case N = 25 and k = 20,
CROSSREC has an entropy of 0.635, which is much better than 2.751, the corresponding value by LibRec.

k=10 k=20
N LibRec CROSSREC LibRec CROSSREC

5 0.857 1.099 0.691 0.814
10 1.760 2.157 1.346 1.534
15 2.675 3.278 1.937 2.312
20 3.577 4.541 2.512 3.143
25 4.594 5.897 3.139 4.005

Table 8: Catalog coverage for N={5,10,15,20,25}, k={10,20}.

k=10 k=20
N LibRec CROSSREC LibRec CROSSREC

5 0.869 0.239 0.552 0.127
10 1.752 0.481 1.098 0.254
15 2.653 0.723 1.639 0.381
20 3.566 0.968 2.193 0.508
25 4.500 1.217 2.751 0.635

Table 9: Entropy for N={5,10,15,20,25}, k={10,20}.

Novelty: the EPC@N scores for LibRec and CROSSREC are shown in Table 10. With LibRec, changing k
from 10 to 20 decreases novelty for all cut-off values. For example, the novelty with N = 25 and k = 10 is
0.349, however once k is changed to 20, it drops to 0.261. For CROSSREC, changing the number of neighbours
k from 10 to 20 brings a rise in novelty, excerpt for N=10. As shown in Tab. 10 CROSSREC obtains always
scores that are higher than those of LibRec. For example, when N = 5 and k = 20, CROSSREC gets 0.292 as
its novelty, whereas LibRec gets 0.114. This implies that CROSSREC recommends libraries that are closer to
the long tail than LibRec can do.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 45

D6.5 The CROSSMINER Knowledge Base - Final Version

k=10 k=20
N LibRec CROSSREC LibRec CROSSREC

5 0.187 0.291 0.114 0.292
10 0.264 0.349 0.166 0.344
15 0.296 0.376 0.204 0.377
20 0.320 0.391 0.236 0.399
25 0.349 0.401 0.261 0.416

Table 10: EPC for N={5,10,15,20,25}, k={10,20}.

Also in this case (see columns 3-7 of Tables 6 and 7), our analyses are supported by statistical procedures.
Differences are always statistically significant. The effect size is negligible/small for accuracy (Precision and
Recall), whereas it is large for all other indicators sales diversity and novelty.

The results in Figure 6.7 and Tables 8, 9, 10 indicate that CROSSREC significantly outperforms LibRec
concerning accuracy, sales diversity, and novelty, with a small/negligible effect size for accuracy and large
elsewhere.

RQ3: What are the reasons for the performance difference between LibRec and CrossRec?

We attempt to ascertain why CROSSREC outperforms LibRec. This task may necessitate further investigations,
both qualitative and quantitative research. However, by carefully studying the internal design of LibRec, we
found out that the improvement attributes to the following facts. In the first place, CROSSREC employs a
completely different approach to represent projects and libraries: it encodes the relationships among them
into a graph. Second, to compute the similarity between two projects, CROSSREC assigns a weight to every
library node using tf-idf (see Eq. (5)). In this way, the level of importance of a node is disproportional to its
popularity. This is similar to the context of document matching where popular terms are given a low weight
[52]. For instance, in Figure 3, lib1 is a popular node since it is referred by 4 projects and this makes it have
a low weight. As a result, CROSSREC is able to better capture the similarity between two projects compared
to LibRec, which equally treats all libraries. Third, LibRec employs a very simple collaborative-filtering
technique, though it also considers a set of k-nearest neighbor similar projects for finding libraries, it neglects
their similarity level by considering all projects in the same way. Also, the technique assigns more weight to
popular libraries without considering the degree of similarity between projects, from where the libraries come.
This explains why LibRec recommends very popular items. In contrast, CROSSREC improves by assigning a
larger weight to libraries that come from highly similar projects (see Eq. (12)). In other words, given a project,
CROSSREC is able to “mimic” the behaviour of highly similar projects, it attempts to suggest a comparable set
of libraries. Lastly, LibRec exploits association rule mining which indeed mines items that co-exist. This is
why the coverage of the recommended items is low compared to that by CROSSREC.

Our qualitative analysis suggests that the improvements achieved by CROSSREC with respect to LibRec
are due to the weighting scheme being applied, which also considers the projects’ similarity, i.e., it rewards
recommendation of libraries from similar projects.

6.8 Threats to Validity

We identify the threats that may adversely affect the validity of the experiments, and the countermeasures taken
to mitigate them. In particular, we focus on internal and external threats to validity as discussed below.

Page 46 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

Threats to internal validity are related to any factors internal to our study that can influence our results. In
the performed experiments, we did not consider the version number of project libraries. Even though this is a
limitation of the current implementation of CROSSREC, also LibRec neglects library versions and consequently
the performance comparison between the two systems has not been affected.

CROSSREC performance can depend on the values of N and k. We showed in the paper results for k = 10, 20,
and for N = 3, 5, 10, 5 (see more in Section 6.9). Results for other values of N and k are consistent with what
we already found.

Threats to external validity concern the generalizability of our findings. In the data collection phase, we tried
to cover a wide range of possibilities by mitigating also the fact that many repositories in GitHub are of low
quality, which is especially true when they do not have many stars. The set of 1, 200 GitHub projects was
randomly created by obtaining the following distribution of stars: 14 projects have 0 stars, 135 projects have
[1-4] stars, 66 projects have [5-9] stars, 512 projects have [10-99] stars, 300 projects have [100-499] stars, 78
projects have [500-999] stars, and 95 projects have more than 1000 stars. Moreover, the number of libraries
that a project in the considered dataset includes varies considerably from 10 to more than 500.

6.9 Discussions

By performing experiments with LibRec and CROSSREC on the same dataset, and by applying the same
experiment settings, we were able to compare their performance in a thorough manner. We have seen that an
increase in the number of neighbor projects considered for recommendation from k = 10 to k = 20 does not
make a big distinction in accuracy for both systems. Furthermore, as there are no changes in success rates
by increasing k, we can conclude that almost all relevant libraries are concentrated on the top most similar
projects. This is further enforced by the fact entropy is improved for both systems when k is increased from
10 to 20. The inclusion of more projects brings various libraries, which helps increase the item distribution.
With LibRec, the fact that novelty deteriorates when k increases shows that the additional projects bring only
popular libraries. Meanwhile novelty does not change with CROSSREC using the same setting with k. This
indicates that the recommended libraries brought by the additional projects do not help improve the overall
novelty.

In this sense, we see that the ability to compute similarities among projects plays an important role in obtaining
a good recommendation performance. In addition, since considering more neighbors means adding more
rows to the user-item ratings matrix, which indeed increases the computational complexity, we anticipate that
utilizing an appropriate value of k can help speed up the computation, thus increasing the overall efficiency,
but still preserving a decent effectiveness.

In contrast to LibRec, CROSSREC is able to maintain a trade-off between accuracy and sales diversity, it
gains better precisions and recalls for all testing folds. Furthermore, CROSSREC also gets an adequate catalog
coverage and novelty by recommending more unpopular libraries to projects.

6.10 Conclusions and Future Work

Third-party libraries contain tailored and well-defined functionalities which in turn offer a useful resource to
software projects being developed. Making use of such libraries allows developers to leverage an existing in-
frastructure, without reinventing the wheel. In this way, recommending third-party libraries to developers help
them save time as well as increase productivity. We implemented CrossRec, a novel approach to library rec-
ommendation that relies on a collaborative-filtering recommender system. The approach has been evaluated by

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 47

D6.5 The CROSSMINER Knowledge Base - Final Version

considering different quality metrics and a dataset consisting of 1, 200 Java projects. The evaluation demon-
strated that our approach outperforms LibRec, a well-known system for library recommendation with regards
to various quality indicators. Furthermore, CrossRec is more efficient as it produces recommendations in a
rather short time. To the best of our knowledge, our work is the first one that employs graphs to represent the
relationships among software projects so as to effectively compute similarity and eventually to recommend li-
braries. Among other characteristics, we found out that the novelty of the outcomes is important in the context
of library recommendation, as very unpopular items, i.e., those belong to the long tail, are also useful.

Concerning the experimental settings presented in the paper, we suppose that feeding CrossRec with more
data as query should certainly improve the overall performance. However, this is a mere assumption and
necessitates additional investigations, which can be considered as an open research issue.

The deployment of various quality metrics to study the systems’ performance has shown to be meaningful.
Though these metrics have been widely used to evaluate recommender systems [122],[59],[128], to the best of
our knowledge, the current work is the first one that exploits them to examine the performance of a system for
recommending third-party libraries. Apart from success rate, we also incorporate other metrics to investigate
if the approaches obtain a good performance, i.e., accuracy, sales diversity, and novelty. Each of these met-
rics reflects a different view on the recommendations, which helps thoroughly study the final outcomes. For
future work, among others we will investigate in detail the importance of Novelty and Sales Diversity in the
recommendation outcomes.

The CrossRec tool has been successfully integrated into Eclipse and provided to developers as an IDE prompt-
ing instant recommendations. We are working to equip our tool with the ability to recommend different arti-
facts, such as API function calls and code snippets, as well as to extract background data from various sources,
such as Eclipse. We plan also to apply the proposed approach to other ecosystems based on different languages
such as C++, and C#.

Last but not least, we plan to compare CrossRec with other systems such as LibCUP [127] and LibFinder [105].
These are approaches that exploit clustering techniques to identify and recommend library co-usage patterns
or incorporate semantics into the recommendation process. Such a comparison should allow for understanding
the strengths and weaknesses of each approach, thereby helping developers select the one that best fits their
need.

Page 48 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

7 Recommendation of StackOverflow Posts

During the development of complex software systems, programmers look for external resources to understand
better how to use specific APIs and to get advice related to their current tasks. StackOverflow provides devel-
opers with a broader insight of API usage and with useful code examples. However, finding StackOverflow
posts that are relevant to the current context is a strenuous task [119]. In this section, we introduce SOrec, an
approach that allows developers to retrieve messages from StackOverflow being relevant to the API function
calls that they have already defined, as well as to the external libraries included in the project being developed.

The approach has been validated by means of a user study involving 11 developers who evaluated 500 posts
with respect to 50 contexts. Experimental results indicate the suitability of SOrec to recommend relevant
StackOverflow posts and concurrently show that the tool outperforms a well-established baseline.

7.1 Overview

Developing complex software systems requires mastering several languages and technologies [121]. Con-
sequently, software developers need to continuously devote effort to understand how to use new third-party
libraries even by consulting existing source code or heterogeneous sources of information. The time spent on
discovering useful resources can have a dramatic impact on productivity [40].

A recent work shows that StackOverflow (SO) [2] is the most popular question-and-answer website [8], which
is a good source of support for developers who seek for probable solutions from the Web [3, 72]. SO discussion
posts provide developers with a broader insight of API usage, and in some cases, with sound code examples.
Nevertheless, as the information space is huge, it is necessary to have tools that help narrow down the search
scope as well as find the most relevant documentations [121]. However, how to construct a query that best
describes the developer’s context and how to properly prepare SO data to be queried are still challenging tasks
[113]. In particular, there is a need to enhance the quality of retrieved posts as well as to refine the input context
to generate decent queries, which then facilitate the search process.

We propose SOrec, a comprehensive approach imposing various measures on both the data collection and
query phases. To improve efficiency, we exploit Apache Lucene [1], an information retrieval library to index
the textual content and code coming from StackOverflow. Posts are retrieved and augmented with additional
data to make them more exposed to queries. On the other side, we boost the context code with different
factors to construct a query that contains information needed for matching against the stored indexes. In a
nutshell, we make use of multi facets of the data available at hand to optimize the search process, with the
ultimate aim of recommending highly relevant SO posts. The approach’s performance has been assessed
by considering various experimental settings. We also compare our tool against a well-established baseline,
i.e., FaCoY [62]. Through a series of user studies, we demonstrate that our proposed approach considerably
improves the recommendation performance, and thus outperforming the considered baseline. In this sense, we
have the following contributions:

• Identification of augmentation measures to automatically refine the considered input SO dump by con-
sidering various pieces of information;

• Exploiting a well-founded IR tool to index the augmented data;
• Characterizing the context code by automatically boosting the constituent terms to improve their expo-

sure to the indexed data and eventually build a proper query in a transparent manner for the developer;
• Two empirical evaluations of the proposed approach to evaluate the performance of SOrec and to com-

pare it with FaCoY.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 49

D6.5 The CROSSMINER Knowledge Base - Final Version

This chapter is structured into the following sections. Section 7.2 provides background and describes the moti-
vations for our work. In Section 7.3, we introduce SOrec, our proposed approach to recommend StackOverflow
posts. The evaluation is presented in Section 7.4. Section 7.5 analyzes the experimental results. Finally, Sec-
tion 7.6 discusses the threats to validity.

7.2 Background and Motivations

Over the last decade several approaches have been conceived to leverage the use of crowdsourcing in software
engineering [81]. Those exploiting StackOverlow as main source of information (e.g., [36, 62, 111, 113, 152])
can be distinguished in two main categories:

C1. approaches that pay attention only to the automated creation of queries to be executed by search engines,
and to the visualization of the retrieved posts according to some ranking model (e.g., [36, 111, 113]);

C2. approaches that focus both on query creation and on advanced indexing mechanisms specifically con-
ceived for storing and retrieving SO posts (e.g., [62, 152]).

Prompter [113] is among the most recent approaches falling in the first category above. It is an automatic
tool, which is used to recommend SO posts given an input context built from source code. Prompter performs
various processing steps to produce a query. First, it splits identifiers and removes stop words. Then it ranks
the terms according to their frequency by considering also the entropy of the term in the entire SO dump. Once
the query is built, the tool exploits a web service to perform the query via the Google and Bing search engines.
Finally, a ranking model is employed to sort the results according to different metrics such as API similarity,
tags analysis, and SO answers and questions.

FaCoY [62] is a recent code-to-code search engine that relies on Apache Lucene and provides developers with
relevant GitHub code snippets. Two main phases are conducted to produce recommendations as follows. The
first one is performed on the context code to get related SO posts from a local indexed dump. To this end,
the system parses the context code and builds an initial query qc to look for posts from StackOverflow. From
the set of retrieved posts, it parses natural language descriptive terms from questions to match against the
question index of Q&A that has been built ex-ante in order to get more posts that contain relevant source code.
Afterwards, a new query q′c is formed from the newly obtained source code. The second phase is done on q′c
to search from GitHub for more snippets, which are finally introduced to developers. By focusing on the first
phase, i.e., searching for SO posts by exploiting the input context code, FaCoY can be considered in category
C2 above. This module works like a bridge between the initial query qc and the final results. In this sense, it
has an important role to play since its performance considerably affects the final recommendation outcomes.

The experimental results [62] demonstrate that FaCoY obtains a superior performance with regards to several
baselines. In this section we pay our attention only to the FaCoY’s module for searching SO posts. By a careful
observation on the system, we found out that it suffers a setback with respect to incomplete data as well as
brief input query. As we can see later on in this chapter, for many queries the system is unable to retrieve any
SO posts, or for some contexts it suggests irrelevant ones, i.e., false positives. To this end, we believe that there
is a need to overcome the limitations, so as to enhance the overall performance of FaCoY.

As an example, we consider the explanatory code snippet shown in Listing 1. The code declares a
CamelContext variable, and invokes functions addRoutes() and configure(). The input code is pretty
simple, and the developer would benefit from being suggested with SO posts discussing aspects related to the
input source code.

Page 50 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

1 package camelinaction;
2
3 import org.apache.camel.CamelContext;
4 import org.apache.camel.builder.RouteBuilder;
5 import org.apache.camel.impl.DefaultCamelContext;
6
7
8 public class FilePrinter {
9

10 public static void main(String args[]) throws Exception {
11 // create CamelContext
12 CamelContext context = new DefaultCamelContext();
13
14 // add our route to the CamelContext
15 context.addRoutes(new RouteBuilder() {
16 public void configure() {
17
18 }
19 });
20 }
21 }
22

Listing 1: Explanatory input context code.

In other words, it is expected that a search engine can recommend discussions that are relevant to the developer
context, for instance the post16 shown in Figure 23. In the figure, we only capture the key information from
the post, i.e., title, question, answer, code and display it in the figure. The post contains two answers and one
of them is useful for the context. For instance, the depicted snippet contains class CurrencyRoute where
addRoutes() is informative and configure() is completely defined. More importantly, this code shows
that some additional packages are required, e.g., ActiveMQConnectionFactory or JmsComponent. In this
sense, the accompanying snippet is handy for supporting the development of the context code in Listing 1 since
it provides a better insight into how to use the related API.

When the context code shown in Listing 1 is fed to FaCoY, the system fails to return any results. We anticipate
that this is due to the lack of input data, i.e., the query code is very brief, and to the indexing process of FaCoY,
which ignores some important components in source code when preparing the indexed data. Thus, we believe
that there is still room for improvement. In this respect, Lucene offers a well-defined platform for managing
and indexing data. However, it is incumbent upon the Lucene user to decide which data to index and which
data to use as query. To this end, we propose an approach to improve the module for searching SO posts of
FaCoY. We also attempt to perform various refinement steps on the input SO dump as well as to polish the
query code. The details of the proposed approach are given in the next section.

7.3 Proposed Approach

Given a user context with code being developed, we aim at searching for posts that contain highly relevant
answers from StackOverflow. We attempt to overcome the limitations of the existing approaches by properly
indexing SO data and by processing the query by developers’ side, exploiting various refinement techniques.
In particular, we come up with a comprehensive approach named SOrec, which takes into consideration three
consecutive phases, i.e., Index Creation, Query Creation, and Query Execution. By Index Creation, we parse
and organize an SO dump into a queryable format to facilitate future search operations. Query Creation is done
at the developer’s side to transform the current context into an informative query that can be used to search

16https://tinyurl.com/yydp8lwd

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 51

https://tinyurl.com/yydp8lwd

D6.5 The CROSSMINER Knowledge Base - Final Version

Figure 23: A StackOverflow post that is relevant to Listing 1.

against the indexed data. Concerning Query Execution, the actual searching is performed by means of Apache
Lucene.

Index and query creations rely on the JDT parser, which allows one to define different types of constructs to
be parsed from the source as a parameter. In particular, there are the following options:

– Compilation_Unit: the source is parsed as a compilation unit.
– Class_Body_Declarations: the source is parsed as a sequence of class body declarations.
– Expression: the source is parsed as a single expression.
– Statements: a constant is used to specify that the source be parsed as a sequence of statements.

This list is ordered according to the information that they compute and the severity of the parser option,
e.g., the Compilation_Unit option allows one to get more information than the others but it is less resilient
to malformed statements.

An overview of the SOrec building components is depicted in Figure 24. The three constituting phases, i.e.,
Index Creation, Query Creation, and Query Execution are described in detail by the following subsections.

7.3.1 Index Creation

Starting from an SO dump, the original data is loaded into MongoDB for further processing. Then, the data is
parsed and transformed into a format that can be queried later on. At this point, it is necessary to use indexed

Page 52 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

Input code

Tokenizing

Index Creation

Post
Cleaning

and
Filtering

Code wrapping

CodeDatabase

Indexer

Indexed
Data

ImportDeclaration

MethodDeclaration

MethodInvocation

VariableType

VariableDec

ClassInstance

Text

Title

Question

Answer

MethodDeclaration

MethodInvocation

VariableType

VariableDec

ClassInstance

ImportDeclaration^

MethodDeclaration^

MethodInvocation^

VariableType^

VariableDec^

ClassInstance^

Title^

Question^

Answer^

Created
Query

Class fixing Import deductions Code
Analysis

Code
Analysis

 Boosting

Query Creation

Query Engine

Query Execution

Relevant SO posts

ImportDeclaration

Developer

Figure 24: The SOrec architecture.

data for future look up. In this work, we opt for Apache Lucene as it is a powerful IR tool being widely used
to manage and query vector data. For each SO post, the following components are excerpted: Title, Body
and Code. Concerning the textual part, we extract questions, answers, and titles and index them by means
of the Indexer. Meanwhile, code contents are parsed to extract useful artifacts before being fed to Lucene.
In particular, the JDT parser is used to obtain six tokens as shown in Table 11. However, code snippets in
StackOverflow posts may neither be complete nor compilable [133], and therefore they might not be found
if being queried in their original format. Thus, to make them compilable, we propose two refinement steps,
namely Post cleaning and filtering and Code wrapping as explained below.

Post cleaning and filtering In SO messages, a question is typically followed by answers and comments.
However, many posts do not have any answers at all. Such these posts are considered not useful for recom-
mendation tasks. Thus, we filter out irrelevant posts as well as remove the low-quality ones first by considering
only those that have accepted answers. Then, only posts that contain the code tag17 to include in their bodies
source code written in Java are accepted for further processing.

Code wrapping To deal with incomplete and uncompilable snippets, we use the parsing option that yields
more tokens. Furthermore, a default class wrapping is added to those snippets that cannot be parsed. For
code snippets without any imports, we wrap up with relevant classes to make them more informative. To this
end, we exploit an archive provided by Benelallam et al. [13]. The dataset contains more than 2.8M artifacts
together with their dependencies as well as other relationships, e.g., versions. We count the frequency that each

17We are aware that there are SO posts that do not always use the code tag to include inline source code. Thus, relying
only on such a tag might discard messages that instead should be kept. Natural Language Processing techniques can be
exploited to make the employed cleaning and filtering phase less strict even though we defer this as future work.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 53

D6.5 The CROSSMINER Knowledge Base - Final Version

artifact is invoked, and sort into a ranked list in descending order. Then only top N class canonical names, i.e.,
the ones appear in an import statement, are selected. By parsing all API calls within a method declaration, we
trace back to their original packages from the top N names. Nevertheless, given that a class instance is invoked
without any declaration, more than one canonical name could be found there. In this case, we compute the
Levenshtein distance from each name to the title and body text of the post and use it as a heuristic to extract
the best-matched one. Finally, the corresponding import directives are placed at the beginning of the code.

1 ASTParser parser = ASTParser.newParser(AST.JLS9);
2 parser.setResolveBindings(true);
3 parser.setKind(ASTParser.K_COMPILATION_UNIT);
4 parser.setSource(snippet.toCharArray());
5 Hashtable<String,String> options = JavaCore.getOptions();
6 options.put(JavaCore.COMPILER_DOC_COMMENT_SUPPORT, JavaCore.ENABLED);
7 parser.setCompilerOptions(options);

Listing 2: Original code snippet.

We consider an example as follows. Listing 2 depicts a code snippet extracted from SO. The code contains just
function calls, and it is incomplete since there is no class declaration and import. If we use this code without
any refinement to index Lucene, it might not be unearthed by the search engine due to the lack of data. Thus, it
is necessary to wrap up and augment it with additional information. By adding class fix and import directives,
we obtain a new code snippet as shown in Listing 3. The resulted snippet resembles a real hand-written code,
which probably facilitates the matching process later on.

1 import java.util.HashMap;
2 import java.util.Hashtable;
3 import org.eclipse.jdt.core.JavaCore;
4 import org.eclipse.jdt.core.dom.AST;
5 import org.eclipse.jdt.core.dom.ASTParser;
6 import org.eclipse.jdt.core.dom.ASTVisitor;
7
8 public class fix(){
9 ASTParser parser = ASTParser.newParser(AST.JLS9);

10 parser.setResolveBindings(true);
11 parser.setKind(ASTParser.K_COMPILATION_UNIT);
12 parser.setSource(snippet.toCharArray());
13 Hashtable<String, String> options = JavaCore.getOptions();
14 options.put(JavaCore.COMPILER_DOC_COMMENT_SUPPORT, JavaCore.ENABLED);
15 parser.setCompilerOptions(options);
16 }

Listing 3: Augmented code snippet.

Once the refinement steps have been done, we index all terms corresponding to the tokens specified in the
Code part of Table 11 and store them into Lucene for further look up.

7.3.2 Query Creation

This phase is conducted on the client side, and the method declaration being developed is used as input context.
A query can be formed by considering all terms extracted from the context code. It is evident that each term
in posts has a different level of importance. Thus, the second phase is to equip a query with more information
that better describes the current context, taking into account the terms’ importance level. Fortunately, Lucene
supports boosting, a scoring mechanism to assign a weight to each indexed token. Based on scoring, we
perform two augmentation steps, i.e., Boosting, and Tokenizing as follows.

Page 54 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

Token Description
Te

xt
Title The title of the post
Answer All answers contained in the post
Question The question

C
od

e

ImportDeclaration The directives used to invoke libraries
MethodDeclaration Method declarations with parameters
MethodInvocation API function calls
VariableType Types of all declared variables
VariableDec All declared variables
ClassInstance Class declarations

Table 11: The used facets.

Boosting The original code is parsed to obtain the six tokens listed in the last half of Table 11. Each term in
the code is assigned a concrete weight to boost the level of importance. Entropy [132] is exploited to compute
the quantity of information of a document using the following formula:

H = −
∑

p(x)logp(x) (20)

where p(x) is the probability of term x. An entropy value ranges from 0 to log(n), where n is the number of
terms within the document. We compute entropy for all terms in the original source code and rank them in a
list of descending order. Then the first quarter of the list is assigned a boost value of 4. Similarly, the next 2nd,
3rd, and 4th quarters get the boost value of 3, 2, and 1, respectively. Finally, all the code terms are attached to
their corresponding tokens to form the query.

Tokenizing By the Index Creation phase in Section 7.3.1, nine different tokens have been populated (see
Table 11). Among them, there are 3 textual tokens, i.e., Title, Answer, and Question. However, by the devel-
oper’s side, the input context contains just source code and there are no textual parts that can be used to match
against the three tokens. Thus, given the input code, we attempt to generate textual tokens by exploiting the
import directives embedded at the beginning of each source file. Starting from an import directive, we break it
into smaller pieces and attach them to all the textual tokens. A previous work [19] shows that in an SO post,
the title is more important than the description. In particular, according to [19] the importance ratio between
description and title of a given post is 1/3. Accordingly, we set a boost value of 4 to the title and 1.4 to both
the answer and question.

By considering the code in Listing 1, the query that SOrec creates after the boosting and tokenizing phases is
shown in Listing 4.

Listing 4: Sample query produced after the Boosting and Tokenizing phases.
VariableDeclarationType: CamelContext^1.0 OR
VariableDeclaration: context^1.0 OR
MethodInvocation: addRoutes^1.0 OR
ClassInstance: DefaultCamelContext^1.0 OR
ImportDeclaration: org.apache.camel.impl.DefaultCamelContext^1.0 OR
ImportDeclaration: org.apache.camel.CamelContext^1.0 OR
ClassInstance: RouteBuilder^1.0 OR
MethodDeclaration: main^1.0 OR
ImportDeclaration: org.apache.camel.builder.RouteBuilder^1.0 OR
MethodDeclaration: configure^1.0 OR
Answer: apache^1.4 OR

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 55

D6.5 The CROSSMINER Knowledge Base - Final Version

Answer: camel^1.4 OR
Question: apache^1.4 OR
Question: camel^1.4 OR
Title: apache^4 OR
Title: camel^4

7.3.3 Query Execution

Queries that are created, as described in the previous section, are executed by means of Apache Lucene.
Moreover, we exploit the Lucene built-in BM25 to rank indexed posts. In particular, BM25 is a bag-of-
words retrieval function that ranks a set of documents based on the query terms appearing in each document,
regardless of the inter-relationship between the query terms within a document, e.g., their relative proximity.
The index is computed as given below.

R(q, d) =
∑

t∈q

fdt

k1((1− b) + b ld
avgld

+ fdt
(21)

where fdt is the frequency of term t in document d; ld is the document d length; avgld is the document average
length along the collection; k is a free parameter usually set to 2 and b ∈ [0, 1]. When b = 0, the normalization
process is not considered and thus the document length does not affect the final score. In constrast, when
b = 1, the full-length normalization is performed. In practice, b is normally set to 0.75. It has been shown that
for ranking documents, BM25 works better than the standard TF-IDF one [109].

By considering the query in Listing 4 as input, the post shown in Figure 23 is among the resulting ones.

In the following section we introduce two evaluations to examine if our proposed solution is beneficial to the
matching of relevant SO posts.

7.4 Evaluation

To study SOrec’s performance, we performed two main evaluations by means of user studies. The first one is
done to evaluate the role of each augmentation proposed in Section 7.3. To this end, we consider 6 experimental
configurations, i.e., A,B,C,D,E,F with 10 queries for each (see Table 12). The second evaluation compares
SOrec against a baseline, namely the module for retrieving SO posts of FaCoY [62], and this corresponds
to the last configuration G. For the sake of representation, from now on the baseline is addressed as FaCoY
(unless otherwise stated), despite the fact that it is only a module of the whole FaCoY system presented in [62].
To thoroughly examine the difference in their performance, we consider 50 queries in G. The queries contain
code snippets that invoke ten of the most popular Java libraries, i.e., Jackson, SWT, MongoDB driver, Javax
Servlet, JDBC API, JDT core, Apache Camel, Apache Wicket, Twitter4j, Apache POI.

The test configurations are explained in Table 12, whose the 2nd to 5th columns specify the presence of the
techniques mentioned in Section 7.3, with the corresponding section being shown in parentheses. For exam-
ple, the 2nd column Wrapping is a combination of class fixing and library import deduction introduced in
Section 7.3.1. To facilitate future research, we made available the SOrec tool together with related data in
GitHub.18

18https://github.com/ase2019-sorec/SOrec

Page 56 Version 1.0
Confidentiality: Public Distribution

28 June 2019

https://github.com/ase2019-sorec/SOrec

D
6.5

T
he

C
R

O
SSM

IN
E

R
K

now
ledge

B
ase

-FinalV
ersion

Conf. Wrapping Boosting Tokenizing Ranking # of queries Description(Sec. 7.3.1) (Sec. 7.3.2) (Sec. 7.3.2) (Sec. 7.3.3)
A — — — — 10 Flat queries, without considering any proposed augmentations
B 3 — — — 10 Wrapping is introduced to queries in Conf. A
C 3 — — 3 10 BM25 is used to rank the retrieved posts
D 3 3 — — 10 Entropy is used to boost the queries in Conf. B
E 3 — 3 — 10 Transforming import directives to textual tokens for queries in Conf. B
F 3 3 3 3 10 Imposing all proposed augmentations
G 3 3 3 3 50 Imposing all proposed augmentations to compare SOrec and FaCoY

Table 12: Experimental configurations.

Name Value Name Value
Size 70GB # of answers 1, 122, 789
of posts 18, 300, 672 # of acc. answers 552, 458
of Java posts 757, 439 # of posts fixed 32, 578

Table 13: A summary of the SO dump used in the evaluation.

Score Description
0 No results at all are returned
1 The post is totally irrelevant
2 The post contains some hints but it is still out of context
3 There are relevant suggestions but the key features are missing
4 The post provides proper recommendations, together with its code snippets it

can help developers solve their current task

Table 14: Confidence Scores.

28
June

2019
V

ersion
1.0

C
onfidentiality:Public

D
istribution

Page
57

D6.5 The CROSSMINER Knowledge Base - Final Version

7.4.1 Dataset

To provide input for the evaluation, we exploited a recent StackOverflow dump19 which is an XML file of
70GB in size and contains more than 18 millions posts. By filtering with tags, we obtained 757, 439 posts
containing Java source code. The resulting set has more than 1, 2 millions of answers with 49.20% of them
being already accepted i.e., 552, 458 answers. In such posts there were 32, 578 snippets that did not have
any imports. We fixed them as presented in Section 7.3.1. Eventually, we indexed and parsed all the posts
following the paradigm described in Section 7.3.1. More details of the dataset used in our evaluation are
shown in Table 13.

7.4.2 User studies

We resort to user study as this is the only way to investigate whether the recommendation outcomes are really
helpful to solve a specific task [77, 82, 113]. A group of 11 developers was asked to participate in the user study.
Six participants are master students attending a Software Engineering course. Three of them are PhD students.
The other two are postdoc researchers. Through a survey sent to each participant, we found out that more than
a half of them have at least 7 years of programming experience. Among these people, three participants have
worked with programming for 15 years. All of them are capable of Java and at least another programming
language, e.g., Python or C++. The evaluators use code search engines like GitHub, StackOverflow, or Maven
on a daily basis. Furthermore, they frequently re-use code fragments collected from these external sources.

The user studies aim at evaluating the relevance of a recommended post and a code snippet. Given a query,
each system, i.e., FaCoY or SOrec produces as outcome in the form a ranked list of relevant posts. To aim for a
fair evaluation, we mixed the top-5 results generated by each system in a single Google form and present them
to the evaluators together with the corresponding context code. This simulates a taste test [44, 110] where
users are asked to give feedback for a product, e.g., food or drink, without having a priori knowledge about
what is being addressed. This aims to eliminate any bias or prejudice against a specific system. Each pair
of code and post, i.e., <query, retrieved post> is examined and evaluated by at least two participants using
the scores listed in Table 14. Apart from 11 developers mentioned before, we also involved one more senior
researcher to validate the evaluation outcome of every query. In case there is a disagreement between any two
participants, e.g., the first person assigned the score of 2 and the second one gave 4 to a same pair, the senior
researcher examines the pair again to eventually reach a consensus.

7.4.3 Evaluation metrics

As typically done in related work, the following metrics have been considered to evaluate the recommendation
outcomes [77, 82]:

• Confidence: it is the score given to a pair of <query, retrieved post> following Table 14;
• Success rate: if at least one of the top-5 retrieved posts receives 3 or 4 as score, the query is considered

to be relevant. Success rate is the ratio of relevant queries to the total number of queries;
• Precision: it is computed as the ratio of pairs in the top-5 list that have a score of 3 or 4 to the total

number of pairs, i.e., 5.

19https://archive.org/details/stackexchange

Page 58 Version 1.0
Confidentiality: Public Distribution

28 June 2019

https://archive.org/details/stackexchange

D6.5 The CROSSMINER Knowledge Base - Final Version

7.4.4 Research questions

The evaluations are conducted to answer the following research questions:

• RQ4: Which experimental configuration brings the best SOrec performance? We compare the flat con-
figuration with the augmented ones to see which setting fosters the best recommendation outcome for
SOrec.

• RQ5: How does SOrec compare with FaCoY? Compared to FaCoY, SOrec is equipped with various
refinement techniques. By answering this question, we ascertain whether our proposed augmentations
are useful for searching posts in comparison to the original approach FaCoY.

• RQ6: What are the reasons for the performance difference? We are interested in understanding the
factors that add up to the performance difference between the two systems.

The following section analyzes the systems’ performance by addressing these research questions.

7.5 Experimental Results

This section presents the results obtained from the experiments as well as related discussions. First, we analyze
the outcomes obtained by performing SOrec with six configurations, i.e., A÷F (see Table 12), to answer RQ4.
Afterwards, we compare FaCoY with SOrec by answering RQ5. Finally, we attempt to reason what constitutes
the performance differences between the two systems by means of RQ6.

RQ4: Which experimental configuration brings the best SOrec performance?

Each configuration is evaluated using 10 queries and each of them corresponds to 5 posts, resulting in 50
pairs of <query, retrieved post>. We gather the confidence scores of each configuration and represent them
in a violin boxplot as shown in Figure 25. According to Hintze et al. [50], a violin boxplot is a combination
of boxplot and density traces which gives a more informative indication of the distribution’s shape, or the
magnitude of the density. Thus, it is evident that performing SOrec with flat queries, i.e., configuration A,
yields the worst performance since the corresponding boxplot is slim and distributed along the vertical axis.
This suggests that feeding queries without incorporating any proposed augmentations brings less relevant posts.
Meanwhile, the system obtains a better performance for configurations B (flat query plus wrapping) and C
(flat query plus wrapping and ranking) with respect to A. Moreover, the two configurations B, C contribute
to a comparable performance as their corresponding violins have a similar shape. Among others, the best
confidence is seen when running SOrec with F, i.e., all proposed augmentations are incorporated. In particular,
no query pair gets 1 as the confidence value and most of them are assigned a value of 3 or 4. This necessarily
means that augmenting queries with all the proposed measures helps retrieve highly relevant posts.

Metric
Configuration

A B C D E F

Success rate 0.90 0.90 0.90 0.90 1.00 1.00
Precision 0.60 0.66 0.68 0.74 0.78 0.82

Table 15: Success rate and Precision.

We consider the success rate and precision scores for the configurations in Table 15. Running SOrec on the
dataset always gets a minimum success rate of 0.90, regardless of the configuration. SOrec gains the maximum

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 59

D6.5 The CROSSMINER Knowledge Base - Final Version

A B C D E F

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Configuration

C
on

fid
en

ce

Figure 25: Confidence for configurations A÷ F.

score, i.e., success rate = 1 when E or F is imposed. This demonstrates that Tokenizing (see Section 7.3.2)
contributes much to the matching of relevant posts. Concerning Precision, we see that using flat query obtains
the lowest precision, i.e., Precision = 0.6 and this is consistent with Confidence in Figure 25. Again, the best
Precision, i.e., 0.82 is obtained when all augmentations are imposed on the queries.

In summary, running SOrec by deploying all proposed augmentations provides the best performance with
respect to confidence, success rate, and precision.

RQ5: How does SOrec compare with FaCoY?

To aim for a reliable comparison, we executed both FaCoY and SOrec on the dataset mentioned in Sec-
tion 7.4.1. Considering the set of 50 queries, SOrec returns 250 pairs of query-post. Each pair gets a score
ranging from 1 to 4. However, FaCoY does not find any results for 10 among the queries, i.e., the correspond-
ing scores are 0 (see Table 14). We depict the confidence scores of both systems using violin boxplots in
Figure 26(a). The boxplots demonstrate that SOrec gains considerably better confidence than that of FaCoY.
In particular, SOrec has more scores of 3 and 4, whereas FaCoY has more scores of 1 and 2. By inspecting the
ten queries that yield no results, we found out that their input context code is considerably short. This supports
our hypothesis in Section 7.2 that FaCoY is less effective given that input data is incomplete or missing.

To aim for a more reliable comparison, we remove the ten queries from the results of both systems and sketch
the confidence scores in Figure 26(b). For this set of queries, the FaCoY’s violin fluctuates starting from 3
down to 1. In contrast, the majority of the violin representing SOrec lies on the upper part of the figure,
starting from 3 in the vertical axis. We conclude that SOrec obtains a better confidence compared to FaCoY.

We further investigate the systems by considering Figure 26(c) where the precision scores for 40 queries are
depicted. By this metric, the performance difference between the two systems becomes more noticeable. To
be more concrete, a larger part of the FaCoY’s boxplot resides under the median horizontal line, implying that
most of the queries get a precision lower than 0.5. In the opposite side, SOrec gains better precisions that are
larger than 0.5, and agglomerate to the upper bound, i.e., 1.0. The metric shows that, given the same query,
SOrec returns more relevant posts than the baseline does.

Page 60 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

FaCoY SOrec

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

System

C
on

fid
en

ce

(a) Confidence (50
queries)

FaCoY SOrec

1.0

1.5

2.0

2.5

3.0

3.5

4.0

System

C
on

fid
en

ce

(b) Confidence (40
queries)

FaCoY SOrec

0.0

0.5

1.0

System

P
re

ci
si

on

(c) Precision (40 queries)

5%

95%

22%

78%

FaCoY SOrec

0

25

50

75

100

System

P
er

ce
nt

ag
e

Match Not relevant

(d) Success rate (40
queries)

Figure 26: Confidence, precision, and success rate for Configuration G.

The obtained success rates for both systems are shown in Figure 26(d). Among 40 queries fed to FaCoY, 78%
of them are successful, i.e., at least one pair of a query gets a value of 3 or 4. Meanwhile, SOrec achieves a
better percentage of success, 38 among 40 queries are successful, yielding a success rate of 95%.

Finally, it is important to understand if the performance difference is statistically significant. We compute
Wilcoxon rank sum test [148] on the scores obtained by the systems and get the following results: p-value
for Confidence is 1.08e-10; p-value for Precision is 8.90e-06; p-value for Success rate is 2.00e-02. The null
hypothesis is that there are no differences between the performance of FaCoY and that of SOrec. Using 95%
as the significance level, or p-value < 0.05 we see that by all quality indicators the p-values are always lower
than 5e-02. Thus, we reject the null hypothesis and conclude that the performance improvement obtained by
SOrec is statistically significant.

SOrec outperforms FaCoY in terms of confidence, success rate, and precision. Furthermore, the perfor-
mance difference between the two systems is statistically significant.

RQ6: What are the reasons for the performance difference?

We refer back to the example introduced in Section 7.2. Actually, the post in Figure 23 is recommended by
SOrec when the code in Listing 1 is used as query. In this example, compared to the baseline, SOrec works
better since it is capable of recommending a very relevant and helpful discussion, while it is not the case with
FaCoY. By carefully investigating the query generated by SOrec, we see that the transformation of import
directives to produce textual tokens as shown in Listing 4 is beneficial to the search process: it equips the
query with important terms which then match with the post’s title. Table 16 distinguishes between the two
systems by listing the facets exploited by each of them.

FaCoY exploits the Porter stemming algorithm and the English analyzing utilities provided by Lucene to per-
form a query. It parses the developer’s source code as well as comments and uses extracted indexes described
in Section 7.2 to search. As shown in RQ4 and RQ5, a flat query containing only full-text is not sufficient to
retrieve useful results. Though FaCoY employs Lucene as its indexer, it does not exhaustively exploit boosting
which is considered to be the heart of Lucene. To this end, SOrec attempts to improve the baseline by im-
posing various boosting measures. By the Index Creation phase, SOrec enriches incomplete code snippet with
class and import directives and then tokenizes them. By the Query Creation and Execution phases, SOrec ex-
ploits import directives from source code to build indexes to match against indexed textual data. Since FaCoY

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 61

D6.5 The CROSSMINER Knowledge Base - Final Version

Technique FaCoY SOrec
Code analysis 3 3

Class fixing 3 3

Import mining — 3

Entropy — 3

BM25 — 3

Tokenizing — 3

Table 16: Comparsion between FaCoY and SOrec.

does not perform these phases, it is unable to match source code with textual context in post. Furthermore,
FaCoY cannot match input code with snippets stored in database but without import directives.

Altogether, the query boosting scheme and the considered facets for the creation of indexes are attributed
to the performance difference between the two systems.

7.6 Threats to validity

We investigate the threats that may affect the validity of the experiments as well as the efforts made to minimize
them.

Internal validity. It concerns any confounding factors that may have an influence on our results. We attempted
to avoid any bias in the user studies by: (i) involving 11 developers with different levels of programming
experience; (ii) simulating a taste test where users are not aware of what they are evaluating. Furthermore, the
labeling results by two evaluators were then double-checked by another senior researcher to aim for soundness
of the outcomes.

External validity. This refers to the generalizability of the obtained results and findings. To contrast and
mitigate this threat, we enforced the following measures. The sets of code snippets that have been selected
as queries invoke various Java libraries. Furthermore, the number of code lines of the queries ranges from 22
to 608, attempting to cover a wide range of possibilities in practice. Our approach is also applicable to other
programming languages, however, in the scope of this work we restricted ourselves to perform evaluations on
posts containing Java source code.

Construct validity. This is related to the experimental settings used to evaluate the similarity approaches. We
addressed the issue seriously and attempted to simulate a real deployment scenario where the tools are used to
search for relevant posts from StackOverflow. In this way, we were able to investigate if the tools are really
applicable to authentic usage.

Conclusion validity. This is whether the exploited experiment methodology is intrinsically related to the
obtained outcome, or there are also other factors that have an impact on it. The evaluation metrics, i.e., Success
rate, Confidence, Precision might cause a threat to conclusion validity. To confront the issue, we employed the
same metrics to evaluate both FaCoY and SOrec.

Page 62 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

8 Categorization of Relevant API Discussions

When incorporating a new API, developers need to look for related resources to find out how to properly use
the API’s constituent functions. However, official documentation often provides a generic usage of the API,
without having tailored examples that fit the current context [96]. It is necessary to find additional discussions
that are useful to solve the development task. To this end, there are different forums and communication
channels that contain discussions about how to use the given API. Nevertheless, the large and ever-growing
volume of such forums and channels is hard to manage without proper tools. In this sense, the classification of
posts to independent categories by topic provides developers with a quick-to-perceive summary of the topics
that are being discussed in a communication channel [54]. This helps developers swiftly approach the most
relevant posts to their need by narrowing down the search scope.

Figure 27(a) and 27(b) illustrate an example where there are two StackOverflow posts that discuss a similar
issue. In Post 120, the user asks for how to use configure Maven, SonarQube and JaCoCo to produce a cover-
age report. Meanwhile, in Post 221 the user is interested in why there is a discrepancy between the coverage
that reported by JaCoCo and SonarQube. Developers who look for discussions related to the usage of Sonar-
Qube22 together with JaCoCo23 would gain a benefit by being suggested with the two posts together as they
complement each other.

(a) Post 1 (b) Post 2

Figure 27: An example of two related StackOverflow posts.

In supervised classification, posts can be assigned to specific categories to facilitate the search process. The
labeling is performed manually, e.g., when developers create or upload a post, they specify one or more cate-
gories to the contained post. Later on, these categories serve as a means to help other developers narrow down
the search scope and efficiently approach the post. Conventional wisdom suggests that the prescribed infor-
mation related to posts and their corresponding categories is meaningful: it reflects the perception of humans
towards the relationship between posts and categories. We hypothesize that posts’ features such as questions,
answers, snippets of code as well as their labels can be exploited to automatically group posts into categories.
In other words, it is reasonable to categorize post by simulating humans’ cognition towards the posts-categories
relationship, using the available data.

20https://stackoverflow.com/questions/13031219/how-to-configure-multi-module-maven-
sonar-jacoco-to-give-merged-coverage-rep

21https://stackoverflow.com/questions/38646016/sonarqube-plugin-not-finding-jacoco-
results

22https://www.sonarqube.org/
23https://www.eclemma.org/jacoco/

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 63

https://stackoverflow.com/questions/13031219/how-to-configure-multi-module-maven-sonar-jacoco-to-give-merged-coverage-rep
https://stackoverflow.com/questions/13031219/how-to-configure-multi-module-maven-sonar-jacoco-to-give-merged-coverage-rep
https://stackoverflow.com/questions/38646016/sonarqube-plugin-not-finding-jacoco-results
https://stackoverflow.com/questions/38646016/sonarqube-plugin-not-finding-jacoco-results
https://www.sonarqube.org/
https://www.eclemma.org/jacoco/

D6.5 The CROSSMINER Knowledge Base - Final Version

There are some notable approaches that deal with the classification of StackOverflow posts. Hou and Mo [54]
implement a Naïve Bayes classifier to classify API discussions into API specific topics (NBM). The approach
was evaluated using three datasets. CASE has been proposed to improved the overall classification perfor-
mance [158]. Beyer et al. [15] present an automated classifier using Random Forest (RF) and Support Vector
Machines (SVM).

The proliferation of Machine Learning techniques in recent years has fostered a plethora of applications in var-
ious domains, contributing superior performance compared to conventional approaches. The ability to learn
from labeled data underpins the main strength of neural networks, making them a well-founded technique in
Machine Learning. To name just a few, pattern recognitions [17], forecasting [154], and classification [6, 116]
are their main application domains. We came up with the adoption of a neural network to build a super-
vised classifier to classify StackOverflow posts. We present SCORE, a tool for Supervised Classification of
StackOverflow discussions using a neuRal nEtwork [97]. An evaluation using various datasets demonstrates
that the tool is able to learn from manually classified data and effectively categorize incoming unlabeled data,
thereby obtaining a high prediction performance. As a base for further presentations, Section 8.1 recalls the
key concepts and notations related to feed-forward neural networks, which mainly come from [101] and [135].
Afterwards, Section 8.2 introduces the proposed architecture. The experimental settings are explained in Sec-
tion 8.3. Finally, Section 8.5 lists the probable threats to the validity of our findings.

8.1 Feed-forward Neural Networks

The atomic element of a neural network is called perceptron. Each perceptron receives a set of inputs and
produces an output. For each input xi, there is a weight ωi associated with it. A bias b is attached to allow for
more flexibility in adjusting the output. An activation function f is used to compute the output, given an input.
Figure 28 depicts a simplified perceptron with three inputs, and the corresponding output is: f(

∑3
j=1 ωjxj+b).

x2

ω2

+ f f(ω, b)

x1

ω1

x3

ω3

b

Figure 28: A perceptron.

A feed-forward neural network is made of several
connected layers of neurons and the output of one
layer is fed as input for the next layer’s neurons,
with an exception of the output layer. The edges
of the network convey information in a unique di-
rection [123], e.g., from left to right. Depending
on the purpose, the number of neurons in a hidden
layer as well as the number of hidden layers may
vary. We consider a concrete example as depicted
in Figure 29(b). For a clear presentation, the con-
stituent weights, biases as well as the activation func-
tions are omitted. The neural network is made of
three layers: the first layer is called input and it consists of L neurons, corresponding to the number of
input features, i.e., X = (x1, x2, ..., xL) [154]. The second one is the hidden layer with M perceptrons,
i.e., H = (h1, h2, ..., hM). The output layer consists of N perceptrons, corresponding to N output categories,
i.e., C = (C1, C2, .., CN). In this work, the sigmoid function is used as the activation function as it has been
widely exploited in different studies [101]. Figure 29(a) sketches the shape of the sigmoid function.

The learning process is illustrated in the pseudo code in Algorithm 1. In this listing, epoch is one round
of learning performed on the training data, i.e., introducing all the input vectors [14]. At the beginning of
each epoch, the training set is shuffled (Line 5) with the aim of randomizing the input data, thus avoiding the
problem of being stuck in local minima [101]. For each epoch, only some mini-batches of the training inputs

Page 64 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

−1.0 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

x

y
f(x) = 1

1+e−x

(a) The sigmoid function

...
...

...

x1

x2

xL

h1

h2

hM

C1

CN

(b) A three-layer neural network

Figure 29: Sigmoid function and neural network.

Algorithm 1 The learning process
1: procedure LEARNING(training_data,epochs)
2: e = 0;
3: model = initialization();
4: while e < epochs do
5: training_data = shuffle(training_data);
6: X, y = split(training_data);
7: ŷ = predict(X,model);
8: error = calculate_error(y, ŷ);
9: model = refine_model(model, error);

10: e++;
11: end while
12: return model
13: end procedure

are selected, and the training is done only on these samples. The network is fed with input data X and labels
y obtained after being split (Line 6). The predicted values ŷ (Line 7) are the results of running on the training
data and they are computed using the following formula.

ŷ = f(z) =
1

1 + e−z
=

1

1 + exp(−∑j ωjxj − b)
(22)

The difference between the real category and the predicted value is called error (Line 8) and computed as given
below.

E(w, b) =
1

2L

∑

x

‖y(x)− (ω.x+ b)‖2 (23)

The error converges to zero when ŷ ≈ y, i.e., the predictions match with the real labels. The final aim of the
learning process is to find a function that best maps the input data with the output data. In other words, we
minimize the error function E(w, b) by choosing a suitable set of weights and biases [17], and this is done by
applying Stochastic Gradient Descent (SGD) as follows [21, 37, 101]. The model performs prediction on the
training data, then the error between the actual outcome and the predicted results is used to adjust the model to
minimize errors (Line 9). The outcome of the training phase is model with weights and biases (Line 12) that
can be used to approximately produce the outputs from the input data.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 65

D6.5 The CROSSMINER Knowledge Base - Final Version

Learning is essentially the process of refining the constituent weights and biases so as to produce the corre-
sponding output y, given a specific input X.

Algorithm 2 depicts the testing process. In contrast to learning, this phase is much simpler where only the
testing data, i.e., the posts that need to be classified, is fed to model that has been obtained from the training
phase. The final outcome is the predicted labels for the input data.

Algorithm 2 The testing process
1: procedure TESTING(model,testing_data)
2: X = testing_data;
3: results = predict(X,model);
4: end procedure

8.2 System Architecture

The architecture of SCORE is illustrated in Figure 30 and consists of the building and deployment phases.
The former processes the labeled posts 1 as follows: each post is serialized into a feature vector, a format that
SCORE can process through the Data Extractor 2 ; subsequently, the feature vectors and the corresponding
labels are used to train SCORE using the Weights Calculator 3 . The result consists of the weights
and biases that are going to be used by the neural network to classify any incoming post in the deployment
phase. Whenever an unlabelled post 4 is fed to SCORE, it is parsed employing the Data Extractor 2 ; the
generated feature vector is then fed to the neural network 5 that, in turn, performs the needed classification
and assigns a label to the vector. Finally, the outcome is a label that classifies the post given as input 6 .

4

1

Input posts Neural
Network Categories

5

Feature vectors

Post labels

Data
Extractor

2

Feature
vectors

3

6

Data
Extractor

2

1

Post
labels

Weights
Calculator

Figure 30: The SCORE architecture.

Pre-processing tasks are performed to transform a post into a feature vector [70], i.e., X = (x1, x2, ..., xL), L
is the number of input neurons (see Figure 29(b)).

Page 66 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

8.3 Evaluation

This section presents the evaluation we have conducted to study the system’s performance. In particular, Sec-
tion 8.3.1 introduces the datasets exploited in the evaluation. Afterwards, the metrics used to evaluate the
classification outcomes are presented in Section 8.3.2.

8.3.1 Datasets

We perform evaluation using different datasets. First, we exploit the data curated and manually classified by
Hou and Mo [54]. These datasets consist of posts collected from the Swing forum. Furthermore, we con-
sider also the dataset by Beyer et al. [15]. This dataset consists of 500 posts which have been categorized
into seven groups as follows: API CHANGE, API USAGE, CONCEPTUAL, DISCREPANCY, DOCUMENTA-
TION, ERRORS, REVIEW. Table 17 gives a summary of all the datasets considered in our evaluation. By
performing evaluation on these datasets, we are able to compare SCORE, albeit indirectly, with the above
mentioned tools.

Study Dataset # of Posts # of Cat.
Hou et al. [54] DS-1.0 45 10

Zhou et al. [158] DS-2.0 158 17
DS-3.0 835 8

Beyer et al. [15] SO 500 7

Table 17: Datasets used in the evaluation.

8.3.2 Evaluation Metrics

We apply ten-fold cross validation to evaluate the system’s performance. Given a test set, from the manually
labeled data we know exactly which category each post belongs to. Thus from the testing data, we create N
independent groups of posts with labels, i.e., G = (G1, G2, .., GN), which are called ground-truth data. After
running SCORE on the test set, we obtainN classes i.e.,C = (C1, C2, .., CN), and each contains a set of posts.
We are interested in how well the produced categories match with the ground-truth data. Thus, to measure the
performance of SCORE, success rate, precision, recall, and F1 score are utilized [96]. If matchi = |Gi ∩ Ci|
is the number of items that appear both in the results and ground-truth data of class i, then the metrics are
explained as follows.

Success rate: It is defined as the ratio of correctly classified posts to the total number of posts in the test set.

success rate =

∑N
i matchi∑N
i |Gi|

× 100% (24)

Precision and Recall: These metrics are used to measure how accurate the results are with respect to the
ground-truth data. Precision is the ratio of the classified items belonging to the ground-truth data:

precisioni =
matchi
|Ci|

(25)

and recall is the ratio of the ground-truth items being found in the classified items:

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 67

D6.5 The CROSSMINER Knowledge Base - Final Version

recalli =
matchi
|Gi|

(26)

F1 score (F-Measure): The metric is computed as the harmonic average of precision and recall by means of
the following formula:

F1 =
2 · precisioni · recalli
precisioni + recalli

(27)

8.4 Results

Table 18 compares the accuracy obtained by SCORE and those from NBM and CASE which are extracted
directly from the original papers [54],[158]. As claimed by Zhou et al.[158], CASE obtains a better success
rate compared to NBM. It is evident that SCORE gains a better success rate for all the three datasets. For DS-
1.0 where there are only 45 posts, SCORE gets 0.750 as accuracy, whereas the corresponding values by NBM
and CASE are 0.622 and 0.688, respectively. This implies that given a limited amount of training data, SCORE
is still able to classify posts with a considerably a high success rate. For DS-3.0 where there are 835 posts, .

Dataset NBM CASE SCORE

DS-1.0 0.622 0.688 0.750
DS-2.0 0.696 0.766 0.896
DS-3.0 0.931 0.950 0.969

Table 18: Success Rate.

Table 19 reports the evaluation results obtained by. We compared SCORE with the best configuration obtained
by Beyer et al. [15] which is using Random Forrest (RF) for classification. Although in some cases, RF yields
a better classification outcomes, generally, SCORE outperforms RF with respect to different metrics. For
example, by category API CHANGE, RF gets 0.97, 0.97, and 0.96 as precision, recall, and F1; meanwhile,
the corresponding metrics by SCORE are 0.94, 0.92, and 0.93. However, overall the accuracy achieved by
SCORE is superior to that of RF in terms of precision, recall and F-Measure scores. For example, the best
performance by SCORE is seen with category REVIEW, where precision, recall, and F1 scores are 0.95, 0.96,
and 0.95, respectively. Finally, the average accuracy by SCORE is also better than that of RF. For instance,
the average precision is 0.93 by SCORE compared to 0.89 by RF. In this sense, we conclude that our proposed
approach obtains a better prediction performance on the considered datasets in comparison to the baselines.

8.5 Threats to validity

We distinguish between internal, construct, and external validity as follows.

Internal validity. Such threats are the internal factors that could have influenced the final outcomes. One
possible threat could be seen through the results obtained for the dataset with a considerably low number of
items, e.g., DS-1.0. Such a threat is eased by denser datasets, i.e., DS-2.0, DS-3.0, and SO.

Construct validity. They are related to the experimental settings presented in the paper, concerning the sim-
ulated setting used to evaluate the tool. The threat has been mitigated by applying ten-fold cross-validation,
attempting to simulate a real scenario of classification.

Page 68 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

Precision Recall F-Measure

Category RF SCORE RF SCORE RF SCORE

API CHANGE 0.97 0.94 0.95 0.92 0.96 0.93
API USAGE 0.86 0.90 0.85 0.90 0.72 0.90

CONCEPTUAL 0.82 0.91 0.82 0.92 0.69 0.91
DISCREPANCY 0.79 0.88 0.79 0.89 0.72 0.88

DOCUMENTATION 0.96 0.98 0.95 0.92 0.93 0.94
ERRORS 0.90 0.93 0.90 0.95 0.84 0.93
REVIEW 0.91 0.95 0.90 0.96 0.82 0.95

AVERAGE 0.89 0.93 0.88 0.92 0.81 0.92

Table 19: Precision, Recall, and F-Measure: Trained with RF (best configuration) and SCORE.

External validity. The main threat to external validity concerns the generalizability of our findings, i.e.,
whether they would still be valid outside the scope of this study. We attempt to moderate the threat by consid-
ering various sets of StackOverflow posts that are of different sizes and cover various categories. Nevertheless,
such datasets might not necessarily reflect the entire domain. In this sense, it is essential to evaluate SCORE
by incorporating a bigger dataset with more categories, as well as more items for each category. Also consid-
ering different classification categories may give more insight about encodings and whether they are (partly or
totally) independent from the classification criteria. We consider this task as a future work.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 69

D6.5 The CROSSMINER Knowledge Base - Final Version

9 Mining API Migration Patterns

Making use of existing third-party libraries allows developers to exploit a well-founded infrastructure, without
re-implementing everything from scratch. In this way, they can save time and increase productivity. How-
ever, third-party libraries evolve over the course of time, many API functions are added, and many others
are removed. A source code project that contains API calls coming from an old version of a library cannot
work when it is integrated with a new version of the library. In this sense, depending software clients of a
library need to be migrated in order to make use of a new library version, and this is understood as API migra-
tion. However, the manual migration process between different library version is time-consuming and prone
to error [66]. In order to migrate a client from one version to another version of a library, a developer has to
understand well the documentation of both versions as well as to choose the right matching between corre-
sponding methods. Given the circumstances, the lack of knowledge on how to migrate the API impedes the
development process. In this sense, the problem of recommending API migration is a strenuous task and it is
essential to have proper machinery to assist developers in choosing the most suitable API migration patterns.

In this chapter, we introduce amAdvisor, a recommender system for providing recommendations related to
API migrations. The system advises developers to migrate a project to use a new library version. Given two
versions of a library, i.e., libv1 and libv2, we collect a set of projects that use each library, which are called P1

and P2, respectively. The final aim is to migrate a project in P1 to make it be compatible with library libv2. In
order to do this, all projects in P2 are exploited as training data to be mined for patterns. Given a depending
client, we migrate every breaking change declaration by means of the training data. The chapter is organized as
follows. In Section 9.1 we present an introduction to the problem of API migration. The amAdvisor approach
is presented in Section 9.2.

9.1 Use Case

Figure 31 depicts an example where there are two versions of a same library, i.e., libv1 and libv2. For each
version, there is a set of depending clients associated with it. In particular, there are three clients that use libv1,
i.e., cv1.1, cv1.2, cv1.3 and four clients depending on libv2, i.e., cv2.1, cv2.2, cv2.3, cv2.4. Among them, cv1.1 now
needs to be migrated in order to use the new library’s version, i.e., libv1. By libv2, cv2.1 should be the new
version of cv1.1.

lib
v1

lib
v2

c
v2.1

c
v2.2

c
v2.4

c
v1.1

c
v1.3

c
v1.2

c
v2.3

Figure 31: An example of API migration.
We take a concrete example as follows. We consider a client that invokes SonarQube (SQ) and it needs to be
changed in order to use a new version of the library. Listing 5 shows a method declaration that contains API
calls of the SQ version 5.6. The API function saveMeasure() was deprecated in SQ 5.6 and removed in
SQ 7.3 and the solution is to replace saveMeasure() with newMeasure().

Page 70 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

/** Old */
public void uploadMetrics(Attribute metricAttribute, Resource resource) {

try {
Measure measure = createMeasureFromAttribute(metricAttribute, resource);
if (measure != null) {
this.sensorContext.saveMeasure(resource, measure);
}

} catch (SonarException e) {
LOG.warn(e.getMessage());
if (resource != null) {
LOG.warn("Resource: " + resource.getName());

}
}

}

Listing 5: A declaration that needs migration.

In this case, when a new version of the library is released, many API calls of the old library’s version are no
longer valid, and thus causing the source code to break. In this sense, it is necessary to migrate the old source
code, in order to adapt to the new library. Listing 6 depicts the new source code after the migration.
/** New */
public void uploadMetrics(Attribute metricAttribute, InputComponent inputComponent) {

try {
aType metricType = metricAttribute.getType();
Metric metric = this.metricFinder.findByKey(metricAttribute.getName());
if (metric != null) {

if (metricType == aType.atInt) {
int value = ((AttributeInt) metricAttribute).getValue();
this.sensorContext.newMeasure().forMetric(metric).withValue(value).on(

inputComponent).save();
} else if (metricType == aType.atFloat) {

Double value = (double) ((AttributeFloat) metricAttribute).getValue();
if (!value.isNaN() && !value.isInfinite()) {

if (metric.valueType().equals(ValueType.PERCENT)) {
value = value * 100;

}
this.sensorContext.newMeasure().forMetric(metric).withValue(value).on(

inputComponent).save();
}

}
}

} catch (IllegalArgumentException e) {
LOG.warn(e.getMessage());
if (inputComponent != null) {
LOG.warn("Resource: " + inputComponent.key());
}

}
}

Listing 6: The declaration after migration.

Such changes are difficult to deal with, since a migration pattern depends very much on the development
context. A pattern may be suitable for a specific context but not for others. In order to find a probable

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 71

D6.5 The CROSSMINER Knowledge Base - Final Version

migration, a developer needs to carefully read the documentation as well as to look for projects that tackle the
same migration issue. In this section, we reformulate the FOCUS approach [96] to solve the API migration
problem. Given a project that needs to be migrated, we search for source code projects that are similar to the
given project. Afterwards, we directly mine migration patterns from the set of top most similar projects.

9.2 Proposed Approach

We propose amAdvisor, a recommender system for guiding API Migration. First, we utilize a tool developed
by the CWI team, i.e., Maracas to analyze the changes between two specific versions of the same library, so-
called delta. Then, we use the extracted delta to replace all the occurrences of the old library in the client.
Finally, the FOCUS framework that we developed in the previous phases of the CROSSMINER project is used
to recommend relevant API function calls and usage patterns to the “migrated” client. Moreover, to better
support developers, the SOrec framework (see Section 7) is exploited to recommend also StackOverflow posts
that eventually provide relevant discussions. In this sense, we propose a triathlon approach to API migration
as we provide developers with API function calls, API usage pattern as well as StackOverflow posts to solve
the problem.

Given two versions of a library, i.e., libv1 and libv2, we attempt to migrate a project running libv1 to make it
be compatible with library libv2. In order to do this, we collected a set of projects that use each library and
exploited all projects that use libv2 as training data to be mined for patterns. By a depending client, we migrate
every breaking change declaration by means of the training data. In particular, we deal with the following
types of migrations.

• Method breaking changes.
• Class breaking changes.
• Removed methods.
• Renamed methods.
• Changed parameter list.

9.2.1 Architecture

The amAdvisor architecture is depicted in Figure 32. We exploit the FOCUS tool [96] previously developed to
search for invocations from closely relevant projects. Data collected from OSS repositories 1 is fed as input
for the Code Parser 2 , which then extracts source code projects to obtain relevant metadata. The similarities
among projects, declarations are computed by the Similarity Calculator 3 . The input metadata is then
encoded in a computable format by means of the Data Encoder 4 . Afterwards, the Recommendation
Engine 5 exploits the similarity scores and computes using a collaborative-filtering technique to generate
recommendations. In particular, the API Generator returns a ranked list of invocations, whereas the Code
Builder accepts such a list to query a Knowledge Base to get real source code snippets. Afterwards, these
code snippets are fed as input for SOrec 6 (see Section 7) which then searches for relevant posts. Finally, a
combo of three different recommendations is supplied to the developer, i.e., ranked list of invocations, code
snippets, and StackOverflow posts containing relevant discussions. In this way, amAdvisor is deemed to be
a triathlon approach to API migration as it provides developers with three types of recommendations to deal
with API migration. In the following subsections, we introduce in greater detail the constituent components of
amAdvisor.

Page 72 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

Developer

OSS
Repositories

Ranked
Invocations

Code Parser

API Generator

Code Builder

Code Snippets

Recommendation
Engine

Data Encoder

Similarity Calculator

Project Comparator

Declaration
Comparator

3

4
1

SOrec

Code Snippets

Ranked
Invocations

Code Snippets

Recommendations

Find and
Replace

SO Posts

2

7

9

5

6

8

Figure 32: The amAdvisor architecture.

9.2.2 Recommending relevant function calls and code snippets

We consider declaration da of a client c that uses libv1. At the time of consideration, c invokes libv2, and as a
result, da needs to be changed. For each pair of library versions, there is a list of changes that are made from
the former version to the latter one and this is computed by means of Maracas, resulting in the delta. From the
delta, we parse c to replace all the old API calls with the new ones. After this phase, we obtain a client which
contains only API function calls of libv1, i.e., c’. We then feed c’ as input to FOCUS find a set of similar
projects from the set of projects that use libv2.

p1

p2

p3

p4

p5

d1

d2

d3

d4

i1 i2 i3 i4 i5 i6 i7

1 ∗
0 ∗

−1∗ −1∗d
e
c
la

r
a
t
io

n

invocation

p
ro

je
ct

Figure 33: Tensor representation of projects, dec-
larations and API calls.

By FOCUS we consider a developer who is writing
declaration da. The developer has already finished δ
declarations (methods), and in d, π invocations (API
calls) have been written. Furthermore, there is a set
of OSS projectsQ available as background data, e.g.,
crawled from GitHub. The final aim is to recommend
to the developer real source code that helps her finish
da, by mining the projects inQ. First, all declarations
and invocations in all source files in c’ andQ are ex-
tracted. Afterwards, the relationship among projects,
declarations, and invocations is represented in a 3-D
matrix. Figure 33 depicts an example of such a ma-
trix for the set of 5 projects, i.e., (p1, .., p5), 4 decla-
rations (d1, .., d4) and 7 invocations (i1, .., p7). Each
slice corresponds to a project, each row is a declara-
tion and each column is an API call. A cell is set to 1 if the project invokes an API call in the given declaration
otherwise it is 0.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 73

D6.5 The CROSSMINER Knowledge Base - Final Version

Given a project p has a set of invocations (i1, i2, .., il), its feature set is vector
−→
φ = (φ1, φ2, .., φl), where φk is

the weight of node ik computed as the tf-idf value, i.e., φk = fik ∗ log(|P |aik
), fik is the number of invocations ik

in p; |P | is the number of projects; and aik is the number of projects that invoke ik [38], the similarity between
projects simα(p, q), q ∈ Q is computed as shown below:

simα(p, q) =

∑n
t=1 φt × ωt√∑n

t=1(φt)
2 ×

√∑n
t=1(ωt)

2
(28)

FOCUS exploits a collaborative-filtering technique to predict additional invocations for d by computing the
missing ratings [28] by using Equation (29):

rd,i,p = rd +

∑
e∈topsim(d)(Re,i,p − re) · simβ(d, e)∑

e∈topsim(d) simβ(d, e)
(29)

where Re,i,p is the combined rating of declaration d for i in all similar projects, computed as follows:

Re,i,p =

∑
q∈topsim(p) re,i,q · simα(p, q)∑

q∈topsim(p) simα(p, q)
(30)

where simα(d, e) is the similarity between projects p and q, computed using Eq. (28); topsim(d) is the set of
top similar declarations of d; rd and re are mean ratings of d and e, respectively; simβ(d, e) is the similarity
between declarations d and e, if we call F(d) and F(e) the sets of invocations of d and e, respectively then
simβ(d, e) is computed as follows:

simβ(d, e) =
|F(d)⋂F(e)|
|F(d)⋃F(e)| (31)

The final score rd,i,p is a prediction for the cell representing invocation i, in declaration d of project p. Then,
we get a ranked list of invocations that are considered to be relevant to d. Top-N items are selected to combine
with π invocations to search for similar declarations stored inQ. Finally, a list of real code snippets is suggested
to the developer.

9.3 Mining cross-project dependencies to discover API migration samples

In Section 9.3.1, we present AETHEREAL, our prototype tool for cross-projects migration dependencies graph
definition. Afterwards, we introduce some interesting use cases of migration graphs in Section 9.3.2.

9.3.1 AETHEREAL

Figure 34 depicts a snapshot of a cross-projects migration dependencies graph (CPMDG). We distinguish
between clients and libraries as follows. Third-party libraries are blank nodes and they identify the versions
that should be migrated, whereas clients (grey nodes) are dependencies that use the libraries. The edges
between can be (i) usage dependencies which are depicted as grey solid edges between a library and a client,
or (ii) version dependencies, which are dotted edges among libraries. AETHEREAL is a tool written in Java that
aims at supporting the automatic generation of CPMDG. The current version of AETHEREAL is both available
online24 and fully integrated into the KB. Maven-miner25 tool extracts the Maven Dependency Graph, which

24https://github.com/crossminer/aethereal
25https://github.com/diverse-project/maven-miner

Page 74 Version 1.0
Confidentiality: Public Distribution

28 June 2019

https://github.com/ crossminer/aethereal
https://github.com/diverse-project/maven-miner

D6.5 The CROSSMINER Knowledge Base - Final Version

Figure 34: Cross-project migration dependencies.

is a graph-based representation of the Maven Central Repository26 [13]. A graph snapshot has been showcased
in [12]. AETHEREAL uses the Maven-miner dataset to compute the library CPMDGs and provides three
different mining modes as follows:

• Client usage identification: given a specific library version, it provides the list of clients that use the
library version.

• Migrated client pairs: given two versions of a library, it computes all the clients that have been already
migrated from the initial version to the evolved one. This information is useful to understand how other
clients deal with the migration of library breaking changes. Table 21 reports a simple client pairs result.

• Dependency version matrix: given a library without any version, AETHEREAL computes a dependency
matrix where each column corresponds to a library version, each row is a non-version client; each cell
contains the client version that uses the specific library version. A sample of the dependency version
matrix is reported in Table 20. Moreover, the migrated client pairs are computed for each library version
pairs.

v1 v2 v3 v4
client1 1.1 1.2
client2 1.0 1.1
...
clientN 1.02 1.12 1.2 2

Table 20: Dependency version matrix of a non-version library.

AETHEREAL includes various facilities that enable one to download and analyze static Maven artifacts. For
instance, artifacts are manipulated as M3 models [9] which are automatically extracted from Java jar file with
Rascal [64] to perform static analysis on the source or binary code. AETHEREAL supports the identification
of clients that deal with the migration of library breaking changes.

MARACAS is a framework developed by the CWI team to support automatic migration of client code according
to changes in APIs. The delta, i.e., changes that occur between two specific versions of the same library, and

26https://search.maven.org/

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 75

https://search.maven.org/

D6.5 The CROSSMINER Knowledge Base - Final Version

v2 v4
client2 1.0 1.1
client3 2.12 3.01

...
clientN 1.12 2

Table 21: Migrated client pairs of two specific library versions, i.e., v2 and v4.

client detection model which identifies the parts of client code affected by the API evolution and must thus
be migrated, are the key ingredients to tackle the API migration challenges. In this context, the MARACAS

framework gets through those steps and it is used in conjunction with AETHEREAL to identify deltas and
detections over mined CPDMGs. Interested readers are kindly referred to Deliverable D2.8 “API Analysis
Components” for more details on MARACAS.

9.3.2 Analysis Results

In this section, we report the result of our mining studies. It is our firm belief that amAdvisor works more
effectively given that more migration samples are available for recommendation.

CPMDGs have been computed over 10 popular Maven dependencies. Table 22 gives a summary of the an-
alyzed CPMDG: The columns #clients and #versions count the total number of clients that use any
version of the library and the number of library version, respectively. As reported in Table 20 AETHE-
REAL provides a dependency version matrix for each input library, then the matrix density column
reports the number of non-empty cells over the total number of dependency version matrix cells. This
value gives an intuition about how the clients have a proclivity for updating the library among the ver-
sions. The other columns report statical data of clients, i.e., average, min, max and the most used version.
org.sonarsource.sonarqube:sonar-plugin-api library was included in the study to effectively sup-
port the FrondEndArt use case.

In our study, migration samples are mined between two specific versions of the library. Clients update library
in spontaneous ways, e.g., they change the library every update, they change the library version when a major
version is released, or they never update the library. Migration client pairs analysis are presented in Table 23.
Tables 24 and 25 report the delta changes computed by MARACAS. In particular, Table 24 summarizes the
delta that occurs between two versions of gson, i.e., 2.3.1 and 2.8.0, whereas the changes between guava
18 and guava 19 are shown in Table 25. Each delta change is related to a different element, i.e., Classes,
methods and files, and different type of change, i.e., Method parameters, Static modifiers, Class/Interface
implementation, Access modifiers, Abstract modifiers, etc. It is worth noting that the number of migration
samples strongly depends on the distance between the targeting library version. In our study, detection models
have been computed between two particular versions of a library and all initial client of clients pairs to detect
which parts of client code are affected by the API evolution and thus must be migrated. An excerpt of clients
detection is reported in Table 26.

Page 76 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D
6.5

T
he

C
R

O
SSM

IN
E

R
K

now
ledge

B
ase

-FinalV
ersion

id Library # clients # versions matrix density CPL (avg)* CPL (min)* CPL (max)* MUV**

1 com.google.code.gson:gson 43,727 35 0.029 1249.51 0 9979 2.3.1
2 org.springframework.data:spring-data-jpa 1,298 83 0.012 14.0 0 94 1.7.1.RELEASE
3 org.springframework.data:spring-data-mongodb 5,840 84 0.011 69,53 1 2388 1.10.7.RELEASE
4 org.apache.common:commons-collections4 11,114 3 0.33 3704.66 74 9392 4.1
5 com.google.guava:guava 1,063,016 90 0.011 1182.7 0 21753 18.0
6 org.springframework:spring-core 29,779 153 0.007 195.55 0 1384 3.0.5.RELEASE
7 joda-time:joda-time 52,003 38 0.026 1369.34 0 9595 2.9.9
8 commons-cli:commons-cli 13,152 10 0.100 1315.2 1 5376 1.2
9 commons-io:commons-io 84,675 25 0.040 3392.08 0 5376 1.2
10 com.fasterxml.jackson.core:jackson-databind 73,870 121 0.008 611.22 0 4542 2.7.4
11 org.sonarsource.sonarqube:sonar-plugin-api 365 60 0.017 6.08 0 38 5.6

* Clients per library
** Most used version

Table 22: Summary on CPMDG.

Library v1 v2 # client pairs # clients V1 # clients V2 % migrated client Major
1 com.google.guava:guava 18.0 19.0 584 21753 19335 2 Yes
2 com.google.code.gson:gson 2.3.1 2.8.0 58 9979 2992 0.5 Yes
3 com.google.code.gson:gson 2.8.0 2.8.2 129 2992 1972 4.31 No
4 org.springframework:spring-core 4.3.17.RELEASE 4.3.18.RELEASE 301 819 327 36.75 No
5 org.springframework:spring-core 3.0.5.RELEASE 4.3.8.RELEASE 18 1384 1130 0.57 Yes
6 org.sonarsource.sonarqube:sonar-plugin-api:jar 5.6 6.3 6 38 9 15.78 Yes

Table 23: Migration report.

28
June

2019
V

ersion
1.0

C
onfidentiality:Public

D
istribution

Page
77

D6.5 The CROSSMINER Knowledge Base - Final Version

Change type # changes
Method parameters changed 1
Static modifiers changed 3
Class/Interface implementation changed 3
Access modifiers changed 14
Abstract modifiers changed 0
Removed elements 35
Added elements 97
Renamed elements 1
Final modifiers changed 1
Deprecated elements 0
Moved elements 109
Field and method types changed 1
Class extension changed 2
Total 267

Table 24: Delta changes from gson:2.3.1 to gson:2.8.0.

Change type # changes
Method parameters changed 0
Static modifiers changed 0
Class/Interface implementation changed 1
Access modifiers changed 1
Abstract modifiers changed 3
Removed elements 3
Added elements 5
Renamed elements 0
Final modifiers changed 1
Deprecated elements 12
Moved elements 2
Field and method types changed 0
Class extension changed 3
Total 31

Table 25: Delta changes from guava:18.0 to guava:19.0.

Client detection types
Client ABSTRACT MODIFIER ACCESS MODIFIER DEPRECATED EXTENDS FINAL MODIFIER
cassandra-driver-core-2.1.6 0 0 11 48 0
async-datastore-client-2.1.0 0 0 22 34 0
futures-extra-2.6.1 0 0 3 44 0
helios-client-0.9.25 0 0 16 29 0
herdcache-1.0.31 0 0 0 35 0
calcite-core-1.11.0 18 0 0 0 17
gfc-guava_2.10-0.1.4 0 0 8 20 0
gfc-guava_2.11-0.1.3 0 0 8 20 0
folsom-0.7.1 0 0 3 22 0
bigtable-client-core-0.2.1 0 0 2 20 0
gax-0.12.0 0 0 0 18 0

Table 26: An excerpt of client detections over 584 clients migrating from guava 18.0 to guava

19.0.

Page 78 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

10 The Knowledge Base

There are many different ways to give real-time suggestions to developers within their accustomed IDE.
CROSSMINER brings a whole new dimension to the advanced IDEs because it collects, processes and stores
huge amount of data about open source components in a complex and cross-project data model. By extracting
data from OSS repositories, we are able to populate a rich knowledge base that facilitates various information
retrieval and recommendation techniques. This section explains in greater detail the CROSSMINER Knowl-
edge Base (KB) and its constituent components.

Figure 35: The Knowledge Base component diagram.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 79

D6.5 The CROSSMINER Knowledge Base - Final Version

10.1 Overview

The conceived architecture together with all implemented components are depicted in Figure 35, and they are
described as follows.

• The KnowledgeBase component is responsible for setting up the other components, as well as for exe-
cuting them;

• Recommender creates recommendations in response to user requests. This component is extensible in
order to add the management of specific types of artifacts. There are three recommender components
as follows: ApiCallRecommender (i) provides developers with code examples that can be examined to
solve the particular problem at hand (e.g., the correct usage of an API) and (ii) suggests next API func-
tion calls. The VersionRecommender component is used to suggest the correct version of a used third
party component to developers. Finally, APIRecommender implements the mechanisms for retrieving
from the KB information about APIs that should be used in the project being implemented;

• The ClusterCalculator component calculates clusters of analyzed artifacts. To this end, similarity func-
tions are used as implemented by the SimilarityCalculator component, which is in charge of managing
the execution of both atomic and composed similarity calculations (see the AtomicSimilarityComposer
and SimilarityComposer components, respectively);

• KnowledgeBaseScheduler triggers the calculation of similarities and clusters thus the execution of the
available similarity functions. UserFeedbackManager manages the feedback expressed by users on the
received recommendations. DeveloperActivityMonitor stores and manages the data about the activity of
the developer while using the CROSSMINER IDE;

• The ClusterCalculator component builds clusters by relying on various similarity functions and cluster-
ing algorithms as presented in Deliverable D6.4.

10.2 Use Cases

Figure 36 shows the use cases and the implementation coverage. In particular, the use cases are marked with
the corresponding implemented tools which have been properly integrated into the Knowledge Base.

• GetProjectAlternatives: We implement novel clustering and similarity mechanisms being able to sug-
gest alternative OSS components for already implemented OSS projects [26]. Based on designated
similarity functions, we are able to detect projects that are similar because of: Provided APIs (GetPro-
jectAlternativesWithSimilarAPIs) [82]; Size (GetProjectAlternativesWithSimilarSize); Application do-
main (GetProjectAlternativesWithSimilarTopics); and Comparable quality (GetProjectAlternativesWith-
SimilarQuality). All use cases related to similarity computation are covered by CROSSSIM [90],[98]
(see Section 4 and Deliverable D6.2);

• GetProjectsByUsedComponents: Depending on the used components, the KB is able to identify and
suggest further components that, according to what other developers have done in the past, should be
also included in the system being implemented. Two prominent examples include recommendation
of third-party libraries [138] and code snippets [83]. We implemented FOCUS [96] to provide the
corresponding functionalities (see Section 5);

• GetAPIUsageSupport: The Knowledge Base provides developers with recommendations on how to
use a given API and to manage the migration of the system in case of deprecated methods. This use
case consists of:

• GetAPIUsageDiscussions: Given an API the developer has already included, it is possible to
retrieve messages from communication channels (like forums, bug reports, and Stack Overflow

Page 80 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

Figure 36: Implementation coverage of the use cases.

posts) that are useful for understanding how to properly use it [112]. This is covered by SCORE,
a supervised classifier for categorizing related StackOverflow posts (see Section 8). Furthermore,
we also provide developers with StackOverflow posts relevant to the code being developed with
SOrec [124] (see Section 7);

• GetAPIUsagePatterns: In case of deprecated API methods, the Knowledge Base recommends
code examples that can be considered as a reference for migrating the system and to make it work
with the new version of the used API [102, 157]. In our implementation amAdvisor is used to
suggest API migration to developers (see Section 9).

• GetRecommendedDeps: Starting from a given configuration and by considering similar projects devel-
oped by other developers, the Knowledge Base recommends additional third-party libraries that should
be further included [138]. To this end, CROSSREC [92],[95] has been fully implemented and integrated;

• GetRecommendedDocs: By considering the documentation examined by other developers that
used similar APIs and frameworks, the Knowledge Base suggests additional sources of informa-
tion, e.g., technical documents, tutorials, etc., that are useful for solving the development problem at
hand [139]. We satisfy this requirement by means of SCORE (see Section 8);

• GetAPIBreakingUpdates: The Knowledge Base implements the notion of API evolution with the aim
of identifying backward compatibility problems affecting source code that uses evolving APIs. In our
implementation, we have amAdvisor to meet this requirement (see Section 9);

• GetRequiredChanges: Given a changed API and a project using it, the Knowledge Base provides users
with an overview of the impact that the API changes have on the depending project (Maracas). Com-
munication channel items discussing about such API changes are also shown. Furthermore, Moreover,
the Knowledge Base provides a list of all the clients that migrate from an old version of the library to a
new one by means of Aethereal (see Section 9).

It is worth noting that the recommendations previously summarized have been identified during the first 6
months of the CROSSMINER project to satisfy the requirements of the industrial partners that work in the
domains of IoT, multi-sector IT services, API co-evolution, software analytics, quality assurance, and OSS
forges [7].

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 81

D6.5 The CROSSMINER Knowledge Base - Final Version

10.3 Datasets

The KB’s performance largely relies on the availability of the background data. It is our firm belief that the
system works effectively given that more data is available for recommendation. For this reason, we provided
an initial dataset that contains data mined from various data sources as follows:

• 600 GitHub projects;
• ≈ 4, 000 jar libraries;
• ≈ 2, 500, 000 Maven artifacts27;
• ≈ 9, 500, 000 Maven dependencies27;

The current dump which is available online28 allows one to replicate all the evaluation of our implemented
recommender systems.

10.4 Technology Dependencies

In this section, we present the technology involved in the Knowledge Base and the rationale behind our choices.
We used MongoDB29 as the data store for the KB platform and Maven30 to define how the KB is built and to
describe its dependencies. The Knowledge Base is mainly written in Java, by means of the Spring framework31.
Spring Boot32 makes it easy to create stand-alone, production-grade Spring-based applications.

In order to facilitate different data access technologies, to non-relational databases, Map Reduce frameworks,
and cloud-based data services, we opted for Spring data33 which is fully integrated into the Spring framework.
Spring data is an umbrella project which contains many subprojects that are specific to a given database.

According to the requirements defined by CROSSMINER, all integrated components need to be tested. To
this end, Junit34 and spring-boot-starter-test35 libraries have been chosen since they support many utilities and
annotations when testing the Knowledge Base.

The equipped mining tools rely on the following frameworks and libraries:

• Apache Lucene36 is a high-performance, full-featured text search engine library written entirely in Java
and it has been used for tasks related to text indexing, comparison and search. The technology is suitable
for nearly any application that requires full-text search, especially cross-platform.

• Simian37 is used to identify duplication in Java, C#, C, etc. source code and even plain text files. Simian
can also be applied on any human readable files such as ini files, deployment descriptors. The technique
is suitable especially for large enterprise projects, where it can be difficult for any one developer to keep
track of all the features (classes, methods, etc.) of the system.

27 These datasets are directly imported from Maven miner [13].
28http://ci3.castalia.camp/dl/M30/KB_CROSSMINER.gz
29https://www.mongodb.com
30https://maven.apache.org/
31https://spring.io/
32https://spring.io/projects/spring-boot
33http://projects.spring.io/spring-data/
34https://junit.org/junit5/
35https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-

testing.html
36https://lucene.apache.org/core/
37https://www.harukizaemon.com/simian/

Page 82 Version 1.0
Confidentiality: Public Distribution

28 June 2019

http://ci3.castalia.camp/dl/M30/KB_CROSSMINER.gz
https://www.mongodb.com
https://maven.apache.org/
https://spring.io/
https://spring.io/projects/spring-boot
http://projects.spring.io/spring-data/
https://junit.org/junit5/
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://lucene.apache.org/core/
https://www.harukizaemon.com/simian/

D6.5 The CROSSMINER Knowledge Base - Final Version

• CLAMS is a tool for summarizing API usage patterns [60]. We apply the tool to pre-group source
code into independent clusters and match the developer’s code against those clusters to find relevant
StackOverflow posts.

• Maven-Miner38 aims at resolving all Maven dependencies hosted in the Maven central repository, then,
storing them into a graph database.

10.5 REST API

In this section we discuss the adoption of the final version of the Knowledge Base, which is able to receive
queries from the user and answer with requested recommendations as shown in Figure 37. In particular, we
present the REST APIs that have been developed in order to enable the adoption of such components from the
other CROSSMINER components, and especially from the Eclipse-based IDE and the Web dashboards under
development in Work Package 7. As shown in the upper side of Figure 35, the KB can be used by means of a
dedicated REST API.

Figure 37: The interaction between a client and the Knowledge Base.

The proposed REST API has been developed using the Spring framework39. REST has quickly become the de
facto standard for building web services on the web since they’re easy to realize and use. Spring Web MVC
is the original web framework built on the Servlet API and included in the Spring Framework from the very
beginning. It provides support to easy develop REST API.

The OpenAPI Specification40 is a specification for machine-readable interface files for describing, producing,
consuming, and visualizing RESTful web services. Swagger41 takes the manual work out of API documen-
tation, with a range of solutions for generating, visualizing, and maintaining API docs. We have integrated
Swagger and OpenApi specification into the Knowledge Base, which is accessible at /swagger-ui.html
(see Figure 38) and /v2/api-docs (Figure 39 shows an excerpt of the implemented APIs). The Knowledge Base
architecture automatically generates OpenAPI specification and Swagger interface starting from code annota-
tions. All the API interfaces consume and produce both application/json and application/xml content
type. The currently supported operations of the Knowledge Base API are presented in the following sections.

10.5.1 Get analyzed projects

GET /api/artifacts/artifacts?page={page}&size={size}&sort={sort}

Description: This resource is used to retrieve a paginated list of imported projects. The path parameters are
listed in Table 27.

38https://github.com/diverse-project/maven-miner
39http://spring.io/
40https://www.openapis.org/
41https://swagger.io/

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 83

https://github.com/diverse-project/maven-miner
http://spring.io/
https://www.openapis.org/
https://swagger.io/

D6.5 The CROSSMINER Knowledge Base - Final Version

Figure 38: REST API - Swagger documentation.

Output data model: Figure 40(a) shows the artifact paged resource. Paged<Artifact> contains the pagi-
nation data (e.g.,totalElements, totalPages) and the content list of paged artifacts.

Name Description
{page} The number of result pages that are returned (0 .. N)
{size} The number of records per page
{sort} Sorting criteria in the format: property(asc | desc). The default sort order is ascending.

Multiple sort criteria are supported

Table 27: artifacts path parameters.

Example: Listing 7 is a call example of this API method. In particular, lines 1 and 2 produce
application/json and application/xml content type, respectively. In the rest of this section we show
a set of curl commands that use application/json as consumed or produced content types. The accept
‘application/xml’ header allows one to produce/consume XML output/input. The data model of the re-
sult is depicted in Figure 40(a)
1 curl -X GET "http://localhost:8080/api/artifacts/artifacts?page=0&size=10&sort=asc" -H "accept: application

/json"
2 curl -X GET "http://localhost:8080/api/artifacts/artifacts?page=0&size=10&sort=asc" -H "accept: application

/xml"

Listing 7: The curl command that gets KB analyzed project by the KB’s id.

Page 84 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

Figure 39: Open API description.

10.5.2 Get analyzed project by id

GET /api/artifacts/{artifact_id}

Description: This resource is used to retrieve an artifact that is analyzed by the Knowledge Base. This resource
requires {artifact_id} as path parameter.

Output model: Figure 40(b) shows the Artifact data model that contains attributes (e.g., fullName,
metricPlatformId) and inner objects (i.e., dependencies, methodDeclarations, starred, type).

Example: Listing 8 is the curl command example that calls this API method. The data model of the result is
depicted in Figure 40(b)

curl -X GET "http://localhost:8080/api/artifacts/5b155b04065f2d726d6db241" -H "accept: application/json"

Listing 8: The curl command that gets KB analyzed project by the KB’s id.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 85

D6.5 The CROSSMINER Knowledge Base - Final Version

(a) Paged Artifact model (b) Artifact model

Figure 40: Artifact and paged list data objects.

10.5.3 Get projects by metric provider platform id

GET /api/artifacts/artifact/mpp/{metricPlatformId}

Description: This resource is used to retrieve an artifact that is analyzed by both the Knowledge Based and the
metric provider platform. This resource takes the id of metric provider platform as path parameter and returns
the artifact metadata described in the KB.

Output data model: See Section 10.5.2 for more detail on the data model.

{metricPlatformId} The id of the metric provider platform that has been analyzed.

Example: Listing 9 is a call example of this API method by curl command.
curl -X GET "http://localhost:8080/api/artifacts/artifact/mpp/jsonsimple" -H "accept: application/json"

Listing 9: The curl command that gets KB analyzed project by metric provider platform id.

10.5.4 Search analyzed projects

GET /api/artifacts/search/{search_string}?page={page}&size={size}&sort={sort}

Description: This resource is used to retrieve a paginated list of projects that are analyzed by the Knowledge
Based and match the search string. Table 28 lists the required path parameters.

Output data model: See output model paragraph in Section 10.5.1 .

Example: Listing 10 is a call example of this API method.

Page 86 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

(a) Query model (b) Recommendation model

Figure 41: Query and recommendation models.

Name Description
{search_string} Search string
{page} Results page you want to retrieve (0..N)
{size} Number of records per page
{sort} Sorting criteria in the format: property(asc | desc). The default order is as-

cending. Multiple sort criteria are supported

Table 28: search path parameters

curl -X GET "http://localhost:8080/api/artifacts/search/json-simple?page=0&size=10&sort=asc" -H "accept:
application/json"

Listing 10: The curl command that adds a new GitHub project to the KB analyzed project.

10.5.5 Add a new GitHub project to the analyzed projects

POST /api/artifacts/add/{github_fullname}

Description: This resource is used to add a new GitHub project to the KB analyzed projects.

Path parameters:

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 87

D6.5 The CROSSMINER Knowledge Base - Final Version

Name Description
{github_fullname} The GitHub full name includes the owner (it can be a user or an organi-

zation) of repository and the name of the repository. The pattern of the
GitHub fullname is <owner−name>−−<repository−name>

Example: Listing 11 is a call example of this API method.
curl -X POST "http://localhost:8080/api/artifacts/add/crossminer--scava" -H "accept: application/json"

Listing 11: The curl command that adds a new GitHub project to the KB analyzed projects.

Output: the server returns 200 OK http message if the project is properly imported, 405 otherwise.

10.5.6 Store developer activity metrics

POST /api/artifacts/store-metrics

Description: This resource is used to store the user activity metrics. It returns true if it properly stores the
developers activity metrics, false otherwise.

Body request: Figure 42 shows the request’s object model. All the classes that map this request model are
available online42.

Output: The server returns 200 OK http message if the metrics are properly imported, 500 Internal
error otherwise.

Figure 42: Developer activity metrics model.

Example: Listing 14 is a curl command example of this API method.

curl -X POST "http://localhost:8080/api/artifacts/store-metrics" -H "accept: application/json" -H "Content-
Type: application/json" -d "{ \"id\": \"string\", \"metricMilestoneSlice\": [{ \"boundary\": [{ \"
beginDate\": \"2019-06-21T16:33:57.342Z\", \"endDate\": \"2019-06-21T16:33:57.342Z\", \"metricValues\":
[{ \"itemValuePairs\": { \"additionalProp1\": 0, \"additionalProp2\": 0, \"additionalProp3\": 0 }, \"
metricName\": \"string\" }] }], \"bounder\": \"string\" }], \"projectId\": \"string\", \"userId\":
\"string\"}"

42https://tinyurl.com/y5gbrobr

Page 88 Version 1.0
Confidentiality: Public Distribution

28 June 2019

https://tinyurl.com/y5gbrobr

D6.5 The CROSSMINER Knowledge Base - Final Version

Listing 12: Store developer activity metrics curl command.

{
"id": "string",
"metricMilestoneSlice": [{

"boundary": [
{

"beginDate": "2019-06-21T17:04:29.834Z",
"endDate": "2019-06-21T17:04:29.834Z",
"metricValues": [

{
"itemValuePairs": {

"additionalProp1": 0,
"additionalProp2": 0,
"additionalProp3": 0

},
"metricName": "string"

}]
}],

"bounder": "string"
}],
"projectId": "string",
"userId": "string"

}

Listing 13: MetricsForProject develeper activity JSON request.

10.5.7 Get alternatives projects

GET /api/recommendation/similar/p/{id}/m/{sim_method}/n/{num}

Description This resource is used to retrieve projects that are similar to a given one. All path parameters are
listed in Table 29.

Output Model: This resource returns the list of most similar artifacts. Section 10.5.2 describes the Artifact
data model.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 89

D6.5 The CROSSMINER Knowledge Base - Final Version

Name Description
{id} id of project that is input of the query.
{sim_method} Results are computed by using the similarity function specified as parameter,

which can be:

• Readme: exploiting readme files to compute the similarity between two
projects;
• Dependency: using the Jaccard distance on project dependencies to calcu-

late the similarity between two projects;
• CrossSim: computing similarities among all imported projects by using

the star events and project dependencies;
• CrossRec: a lightweight version of CROSSSIM. It uses project dependen-

cies to provide similarities among all imported projects;
• Focus: it takes the API method calls used by the projects to compute the

similarity between them.
• RepoPalCompound: being inspired by the approach presented in [155];
• RepoPalCompoundV2: an evolved version of RepoPalCompound similar-

ity;
• SizeBased: aggregating projects with similar size in term of lines of codes;
• QualityBased: exploiting euclidean distance between the quality models

computed on metric provider platform.

{num} number of expected projects in the result.

Table 29: Path parameters of the similar artifact resource.

Example:
curl -X GET "http://localhost:8080/api/recommendation/similar/p/5b155b04065f2d726d6db241/m/CrossSim/n/5" -H

"accept: application/json"

Listing 14: The curl command that stores developer activity metrics.

[
{
id: "5a228cd62e429420384481ab",
description: "Sample application using Spring Boot, Axon, ElasticSearch, AngularJS and Websockets",
active: true,
fullName: "avthart/spring-boot-axon-sample",
html_url: "https://github.com/avthart/spring-boot-axon-sample",
clone_url: "https://github.com/avthart/spring-boot-axon-sample.git",
git_url: "git://github.com/avthart/spring-boot-axon-sample.git",
master_branch: "master",
target: {

id: "5a228cd62e459420384351a2",
...

}
},
...

]

Listing 15: An instance of JSON result.

Page 90 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

10.5.8 Get relevant StackOverflow posts

POST /api/recommendation/recommended_API_documentation

Description: Given a source code context as input this resource returns relevant Stack Overflow posts as
output.

Body request: Figure 41(a) shows the object model of the request. In particular, this resource requires the
value of compilationUnit as input.

Output Model: Figure 41(b) shows the Recommendation resource definition. Listing 18 is an excerpt of a
SOrec result. apiDocumentationLink field contains the id of StackOvderflow post in each recommendation
item.

Example: Listing 16 is a curl command example. An instance of JSON query object is depicted in Listing 17.

curl -X POST "http://localhost:8080/api/recommendation/recommended_API_documentation" -H "accept:
application/json" -H "Content-Type: application/json" -d "{ \"compilationUnit\": \"package
camelinaction;import org.apache.camel.CamelContext;import org.apache.camel.builder.RouteBuilder;import
org.apache.camel.impl.DefaultCamelContext;public class FilePrinter{\\tpublic static void main (String[]
args) throws Exception{\\t\\tCamelContext context = new DefaultCamelContext();\\t\\tcontext.addRoutes(
new RouteBuilder(){\\t\\t\\tpublic void configure(){}\\t\\t});\\t}}\"}"

Listing 16: SOrec curl command example.

{
"compilationUnit": "package camelinaction;import

org.apache.camel.CamelContext;import org.apache.camel.builder.RouteBuilder; import org.apache.camel.
impl.DefaultCamelContext; public class FilePrinter {public static void main (String[] args) throws
Exception{CamelContext context = new DefaultCamelContext();context.addRoutes(new RouteBuilder(){public
void configure(){}});}}"

}

Listing 17: SOrec request body example.

{
"recommendationItems": [

{
"apiDocumentationLink": "45700257",
"significance": 141.320068359375,
},
{
"apiDocumentationLink": "46766311",
"significance": 96.2380599975586,
},
...

]
}

Listing 18: SOrec JSON response excerpt.

10.5.9 Get third-party libraries

POST /api/recommendation/recommended_library

Description: Given an input project, this resource returns relevant third-party libraries as output.

Body request: Figure 41(a) shows the object model of the request. In particular, this resource requires the list
of used dependencies (i.e.,)compilationUnit inner objects) as input.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 91

D6.5 The CROSSMINER Knowledge Base - Final Version

Output Model: Figure 41(b) shows the Recommendation resource definition. Listing 21 is an excerpt of a
CROSSREC result. projectDependencies objects are the recommend libraries.

Example: Listing 19 is a curl command example. An instance of JSON query object is depicted in Listing 20.

curl -X POST "http://localhost:8080/api/recommendation/recommended_library" -H "accept: application/json" -
H "Content-Type: application/json" -d "{ \"projectDependencies\": [{ \"artifactID\": \"junit\", \"
groupID\": \"junit\", \"version\": \"4.0\" }, { \"artifactID\": \"commons-io\", \"groupID\": \"commons-
io\", \"version\": \"2.0\" }]}"

Listing 19: CROSSREC curl command example.

{
"recommendationItems": [{
"recommendedLibrary": {

"libraryName": "log4j:log4j:latest.release",
"url": "https://mvnrepository.com/artifact/log4j/log4j/latest.release"

},
"significance": 1.3099382141578972,
"recommendationType": "RecommendedLibrary"

},
{
"recommendedLibrary": {

"libraryName": "org.slf4j:slf4j-api:1.8.0-beta2",
"url": "https://mvnrepository.com/artifact/org.slf4j/slf4j-api/1.8.0-beta2"

},
"significance": 1.2574478115112746,
"recommendationType": "RecommendedLibrary"

},
...
]

}

Listing 20: CROSSREC response body example.

{
"projectDependencies": [
{

"artifactID": "junit",
"groupID": "junit",
"version": "4.0"

},
{

"artifactID": "commons-io",
"groupID": "commons-io",
"version": "2.0"

}
]

}

Listing 21: CROSSREC recommendation body response example.

10.5.10 Get API function calls

POST /api/recommendation/focus/
Description: Given a project source code as input this resource returns a recommended list of API function
calls.

Body request: Figure 41(a) shows the object model of the request. In particular, this resource requires the list
of method declaration and method invocation pairs (i.e., methodDeclarations).

Page 92 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

Output Model: Figure 41(b) shows the Recommendation resource definition. Listing 23 is an excerpt of a
FOCUS result. apiFunctionCallFOCUS objects contains the recommend API function calls.

Example: The listing of a curl command is too long to be shown. Thus, an excerpt of a JSON query object is
depicted in Listing 22.

{
"focusInput": {

"activeDeclaration": "com/sun/activation/viewers/TextEditor/performSaveOperation()",
"methodDeclarations": [

{
"name": "com/sun/activation/registries/MimeTypeFile/parseEntry(java.lang.String)",
"methodInvocations": [

"java/lang/String/length()",
"java/util/StringTokenizer/nextToken()",
"java/lang/String/charAt(int)",
"java/util/StringTokenizer/StringTokenizer(java.lang.String,java.lang.String)",
"java/lang/String/trim()",
"java/lang/String/equals(java.lang.Object)",
"java/lang/StringBuffer/toString()",
"java/lang/StringBuffer/append(java.lang.String)",
"java/util/StringTokenizer/StringTokenizer(java.lang.String)",
"java/util/StringTokenizer/countTokens()",
"java/util/StringTokenizer/hasMoreTokens()",
"java/util/Hashtable/put(java.lang.Object,java.lang.Object)",
"java/lang/String/indexOf(int)",
"java/lang/StringBuffer/StringBuffer()"

]
},
{

"name": "com/sun/activation/registries/MailcapFile/parse(java.io.Reader)",
"methodInvocations": [

"java/lang/String/length()",
"java/lang/StringBuffer/toString()",
"java/lang/String/substring(int,int)",
"java/lang/StringBuffer/append(java.lang.String)",
"java/lang/StringBuffer/StringBuffer()",
"java/lang/String/charAt(int)",
"java/lang/String/trim()",
"java/io/BufferedReader/BufferedReader(java.io.Reader)",
"java/io/BufferedReader/readLine()"

]
},
...

]
}

}

Listing 22: FOCUS request body example.

{
"recommendationItems": [

{
"apiDocumentationLink": null,
"apiCallRecommendation": null,
"significance": 0,
"recommendationType": "FOCUS",
"apiFunctionCallFOCUS": {

"com/sun/activation/viewers/ImageViewer/getToolkit()": 0.9430653,
"java/awt/MediaTracker/MediaTracker(java.awt.Component)": 0.9430653,
"java/awt/MediaTracker/addImage(java.awt.Image,int)": 0.9430653,
"java/awt/MediaTracker/getErrorsID(int)": 0.9430653,
"java/awt/MediaTracker/statusID(int,boolean)": 0.9430653,
"java/awt/MediaTracker/waitForAll()": 0.9430653,
"java/awt/MediaTracker/waitForID(int)": 0.9430653,
"java/awt/Toolkit/createImage(byte[])": 0.9430653,

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 93

D6.5 The CROSSMINER Knowledge Base - Final Version

"java/io/ByteArrayOutputStream/ByteArrayOutputStream()": 0.9430653,
"java/io/ByteArrayOutputStream/toByteArray()": 0.9430653,
"java/io/ByteArrayOutputStream/write(byte[],int,int)": 0.9430653,
"java/io/IOException/IOException(java.lang.String)": 0.9430653,
"java/io/InputStream/close()": 0.9430653,
"java/io/InputStream/read(byte[])": 0.9430653,

...
}

}
]

}

Listing 23: CROSSREC recommendation body response example.

10.5.11 Get API usage patterns

POST POST /api/recommendation/recommended_API_call

Description: Given a project code as input this resource returns a list of patterns that matches with the current
code.

Body request: Figure 41(a) shows the object model of the request. In particular, this resource requires the
value of compilationUnit as input.

Output Model: Figure 41(b) shows the Recommendation resource definition. Listing 26 is an excerpt of a
pattern recommender result. apiCallRecommendation contains the suggested patterns.

Example: Listing 24 is a curl command example. However, an excerpt of a JSON query object is depicted
in Listing 25.

curl -X POST "http://localhost:8080/api/recommendation/recommended_API_call" -H "accept:
application/json" -H "Content-Type: application/json" -d "{ \"currentMethodCode\": \"JavaType myType =

oldType.getContentType(); \JsonDeserializer<Object> myDeserializer = myType.getValueHandler();\
TypeDeserializer myTypeDeserializer = myType.getTypeHandler();\"}"

Listing 24: Pattern recommender curl command example.

{
"currentMethodCode": "JavaType myType = oldType.getContentType(); \nJsonDeserializer<Object>

myDeserializer = myType.getValueHandler();\nTypeDeserializer myTypeDeserializer = myType.getTypeHandler
();"

}

Listing 25: Pattern recommender request body example.

{
"recommendationItems": [
{

"apiCallRecommendation": {
"codeLines": [

"{",
" DeserializationContext ctxt;",
" final BeanDescription beanDesc;",
" final DeserializerFactoryConfig _factoryConfig;",
" ArrayType type;",
" final DeserializationConfig config = ctxt.getConfig();",
" JavaType elemType = type.getContentType();",
"",
" ...",
"}"

],

Page 94 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

Figure 43: Cluster data model.

"duplicatedLines": 6,
"time": 2449,
"pattern": "jackson-databind_69.java"
}

},...
]

}

Listing 26: Pattern recommender recommendation body response example.

10.5.12 Get clustered projects

GET cluster/sim_method/cluster_algo

Description This resource is used to retrieve clusters of projects. All path parameters are listed in Table 30.

Output Model: This resource returns the list of artifact clusters. Figure 43 depicts the Cluster data object.
In Section 10.5.2, we described the Artifact data model.

Example: An excerpt of JSON response object is depicted in Listing 27.

Name Description
{sim_method} Results are computed by using the similarity function specified as parameter,

which is the same with those in Table 29.
{cluster_algo} results are computed by using the clustering algorithm specified as parameter,

which can be CLARA, K-Medoids or HCLibrary.

Table 30: Resource path parameters.

[
{
"clusterization": {

"clusterizationDate": 1544376657311,

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 95

D6.5 The CROSSMINER Knowledge Base - Final Version

"similarityMethod": "CrossSim",
"clusterAlgorithm": "Clara",
"id": "5c0d5151fe03927a05d2055a"
},
"mostRepresentative": {

"id": "5c0d5150fe03927a05d203ce",
"name": "AlipayOrdersSupervisor-GUI",
"description": "GUI of AlipayOrdersSupervisor, implemented in Java and Swing",
...

},
"artifacts": [
{

"id": "5c0d5150fe03927a05d203d2",
"name": "RssToMobiService",
"description": "A rss to mobi service",
...

}, ...
},
{
"clusterization": {
...
}

]

Listing 27: An excerpt of JSON result.

10.5.13 Get cluster containing a particular project

GET cluster/{sim_method}/{cluster_algo}/{artifact_id}

Description This resource is used to retrieve the cluster that contains a given project. It checks among the
clusters that are computed by the given similarity method and cluster algorithm. All path parameters are listed
in Table 31.

Output Model: This resource returns the list of cluster of artifacts. Figure 43 depicts the Cluster data object.
In section 10.5.2, we describe the Artifact data model.

Example: An excerpt of JSON response object is depicted in Listing 28.

Name Description
{sim_method} Results are computed by using the similarity function specified as parameter,

which is the same with those in Table 29.
{cluster_algo} Results are computed by using the clustering algorithm specified as parameter,

which can be CLARA, K-Medoids or HCLibrary.
{artifact_id} The id of the artifact.

Table 31: Resource path parameters.

{
"clusterization": {
"clusterizationDate": 1544376657311,
"similarityMethod": "CrossSim",
"clusterAlgorithm": "Clara",

Page 96 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

Figure 44: Migration model.

"id": "5c0d5151fe03927a05d2055a"
},
"mostRepresentative": {

"id": "5c0d5150fe03927a05d203ce",
"name": "AlipayOrdersSupervisor-GUI",
"description": "GUI of AlipayOrdersSupervisor, implemented in Java and Swing",
...

},
"artifacts": [

{
"id": "5c0d5150fe03927a05d203d2",
"name": "RssToMobiService",
"description": "A rss to mobi service",
...

}, ...
],
...

}]

Listing 28: JSON result excerpt.

10.5.14 Get migration client pairs examples

GET /api/api-migration/{coordV1}/{coordV2}

Description This resource provides the list of client pairs that already migrate from the initial version of the
API to the evolved one. All path parameters are listed in Table 32.

Output Model: This resource returns the client migration information. This recommendation uses the
Artifact object model defined by aether Eclipse projects. The Java MigrationInfo maping class is shown
in Figure 44.

{
"libv1": {

"groupId": "junit",
"artifactId": "junit",
"version": "4.10",
"extension": "jar"

},
"libv2": {

"groupId": "junit",
"artifactId": "junit",
"version": "4.12",
"extension": "jar"

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 97

D6.5 The CROSSMINER Knowledge Base - Final Version

Name Description
{coordV1} The Maven central coordinate of the initial version of the library. The format is

<group_id>:<artifact_id>:<version>.
{coordV2} The Maven central coordinate of the evolved version of the library. The format is

<group_id>:<artifact_id>:<version>.

Table 32: Resource path parameters.

}
"count": 143,
"clientsV1": [
{

"groupId": "org.apache.jmeter",
"artifactId": "ApacheJMeter_tcp",
"version": "2.8",
"extension": "jar",

}, ...
]
"clientsV2": [...]

}

Listing 29: JSON result excerpt.

10.5.15 Get clients using a particular library version

Description This resource provides the list of client pairs that already migrate from the initial version of the
API to an evolved one. {coord} path parameter is the Maven central coordinate of a specific library version.
The coordinate format is <group_id>:<artifact_id>:<version>.

Output Model: This resource returns the list of clients that use a specific Maven library version. This recom-
mendation uses the Artifact object model defined by aether Eclipse projects. Listing 30 shows an excerpt
of the resource response.

[
{
"groupId": "org.apache.jmeter",
"artifactId": "ApacheJMeter_tcp",
"version": "2.8",
"extension": "jar",

}, ...
]

Listing 30: JSON result excerpt.

10.5.16 Get StackOverflow posts related to discussions about API migration

GET /api/api-migration/documentation/{coordV1}/{coordV2}

Description This resource provides a list of StackOverflow posts. The list of path parameters is shown in
Table 33.

Page 98 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

Name Description
{coordV1} The Maven central coordinate of the initial version of the library. The format is

<group_id>:<artifact_id>:<version>
{coordV2} The Maven central coordinate of the evolved version of the library. The format is

<group_id>:<artifact_id>:<version>

Table 33: Resource path parameters.

Output Model: Figure 41(b) shows the Recommendation resource definition. Listing 31 is an excerpt of a
SOrec result. apiDocumentationLink field contains the id of StackOvderflow post in each recommendation
item.

{
"recommendationItems": [

{
"apiDocumentationLink": "45700257",
"significance": 141.320068359375,

},
{

"apiDocumentationLink": "46766311",
"significance": 96.2380599975586,

},
...

]
}

Listing 31: SOrec JSON response excerpt.

10.5.17 Get impact on library evolution

POST POST /api/api-migration/detection/{clientV1}/{clientV2}

Description This resource provides a list of client locations that are impacted by the evolution on the specific
library. Table 34 shows the list of path parameters.

Output Model: This resource returns the list of detections. Figure 45 depicts the Detection data object.

Figure 45: Detection data object

Example: Listing 32 is an instance of curl command that calls this resource. An excerpt of JSON response
object is depicted in Listing 33.

curl -X POST "http://localhost:8080/api/api-migration/detection/com.google.guava:guava:18/com.google.guava:
guava:19" -H "accept: */*" -H "Content-Type: multipart/form-data" -F "file=@my.m3;type=text/plain"

Listing 32: Detection curl command.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 99

D6.5 The CROSSMINER Knowledge Base - Final Version

Name Description
{coordV1} The Maven central coordinate of the initial version of the library. The format is

<group_id>:<artifact_id>:<version>
{coordV2} The Maven central coordinate of the evolved version of the library. The format is

<group_id>:<artifact_id>:<version>
{clientM3} The M3 model of the client. A multipart file is needed

Table 34: Resource path parameters.

[
{
"clientLocation": "autofixture/publicinterface/generators/implementationdetails/ConcreteInstanceType/
isAssignableFrom(java.lang.Class",
"oldLibraryLocation": "java+method:///com/google/common/reflect/TypeToken/isAssignableFrom(java.lang.
reflect.Type)",
"newLibraryLocation": "java+method:///com/google/common/reflect/TypeToken/isAssignableFrom(java.lang.
reflect.Type)",
"type": "REMOVED"

},
...

]

Listing 33: Detection JSON response.

10.5.18 Get useful code snippets to migrate towards a new library version

Description: This resource provides a list of code snippet that other clients use to support the breaking changes
introduced by the adoption of a new version of a library. Table 34 shows the list of path parameters.

Output Model: This resource returns the list of code snippet. Figure 46 depicts the Detection data object.

Example: Listing 34 is an instance of curl command that calls this resource. An excerpt of the JSON response
object is depicted in Listing 35.

Figure 46: Detection data object.

curl -X POST "http://localhost:8080/api/api-migration/recommend/com.google.guava:guava:18/com.google.guava:
guava:19" -H "accept: */*" -H "Content-Type: multipart/form-data" -F "file=@my.m3;type=text/plain"

Listing 34: Detection curl command.

{
"recommendationItems": [
{
"apiCallRecommendation": {
"codeLines": [
"{",

Page 100 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

" DeserializationContext ctxt;",
" final BeanDescription beanDesc;",
" final DeserializerFactoryConfig _factoryConfig;",
" ArrayType type;",
" final DeserializationConfig config = ctxt.getConfig();",
" JavaType elemType = type.getContentType();",
"",
" ...",
"}"
],
"duplicatedLines": 6,
"time": 2449,
"pattern": "jackson-databind_69.java"
}
},...
]
}

Listing 35: Pattern recommender recommendation body response example.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 101

D6.5 The CROSSMINER Knowledge Base - Final Version

11 Conclusions

In this deliverable, we presented the results related to the final version of the Knowledge Base. Together
with the previous deliverables, i.e., D6.1, D6.2, D6.3, and D6.4, we fulfilled all the requirements defined in
Deliverable D1.1 as shown in Table 35. This section summarizes the main contributions of Work Package 6.

Name Status
GetProjectAlternativesWithSimilarAPIs
GetProjectAlternativesWithSimilarSize
GetProjectAlternativesWithSimilarTopics
GetProjectAlternativesWithSimilarQuality
GetProjectsByUsedComponents
GetAPIUsageDiscussions
GetAPIUsagePatterns
GetRecommendedDeps
GetRecommendedDocs
GetAPIBreakingUpdates
GetRequiredChanges

Table 35: Implementation status of the required recommendations as presented in D6.1. Early stage:
#; Half done: G#; Fully done:

We developed FOCUS, a context-aware collaborative-filtering recommender system for supporting API rec-
ommendations. The tool is twofold, as it concurrently supports two related use cases, namely API function
calls and API usage pattern recommendations. Based on a dedicated graph representation, we are able to
represent the relationships among projects, method declarations and method invocations and to compute the
similarities among them. The similarity scores are then used as input for the recommendation engine that in
turn predicts the inclusion of additional invocations and eventually generates recommendations. A preliminary
evaluation on a dataset of 3, 600 jar files curated from the Maven repository shows that FOCUS is able to pro-
vide highly relevant API function calls. Furthermore, we use a combination of CLAMS [60] and Simian to
recommend API usage patterns. Though this functionality is already covered by FOCUS, we aim at enriching
the Knowledge Base with various recommendation techniques, thus allowing developers to freely choose the
most convenient one.

We presented CROSSREC, a novel approach to library recommendation that relies on a collaborative-filtering
recommender system to assist software developers in mining OSS repositories. The approach has been evalu-
ated by considering different quality metrics and a dataset consisting of 1, 200 Java projects. The experimental
results show that our system for recommending third-party libraries outperforms LibRec, a well-known base-
line.

To solve the problem of API documentation, we developed SOrec, a tool that searches for StackOverflow posts
containing related code and discussions that are useful for a programming task. SOrec addresses both the
issue of properly indexing SO posts, and that of automatically creating queries in a transparent manner for the
developer. In particular, SOrec performs different augmentations of SO posts for indexing them, and of input
contexts for creating corresponding queries. To study the performance of SOrec we performed large-scale user
studies. A first study has been done in order to understand which combination of the conceived augmentations
is the best one in terms of SOrec performance. A second and larger user study has been done to compare SOrec
with FaCoY. The experimental results show that SOrec outperforms the module of FaCoY, which is devoted
to searching for SO posts that are relevant with input developer contexts. The implementation of SOrec is

Page 102 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

twofold. First, we already started with the integration of SOrec into the Eclipse IDE and in this respect, our
short-term plan is to improve the usage of the tool directly from the IDE to suitably support developers in real-
world settings. Second, the tool can be used to replace the corresponding module by FaCoY, aiming to boost
up the system’s overall performance. Our future research agenda focuses on performing further evaluations,
especially to compare SOrec with those approaches that rely on general purpose search engines and that focus
only on the query creation phase (e.g., Prompter [113]). SOrec can be combined with the previous tools and
approaches with the aim of providing developers with recommendations consisting of both source code and
related discussions retrieved from StackOverflow. SOrec is highly related to existing code search engines as
they can be used in combination to provide developers with not only API calls, sample source code but also
related discussions. Though SOrec works well given the context, we still believe that its performance can be
further improved, e.g., by better exploiting the boosting scheme. We consider the issue as our future research.

Aiming at supporting developers in working with new APIs, we introduced SCORE, a supervised classifier for
categorizing StackOverflow posts. Given a specific API, SCORE is able to group the most relevant discussions
that are useful for facilitating the integration task. To evaluate SCORE, we exploit various datasets coming
from existing studies. The experimental results show that SCORE obtains a high classification performance
and thus outperforming the considered baselines. To further improve the system’s performance, we plan to
deploy a deep neural network to classify posts, and this remains a future work in our academic calendar.

Finally, to assist developers in dealing with API breaking changes by suggesting relevant migration patterns,
we proposed amAdvisor, a recommender system that works on top of FOCUS and a tool for detecting API
changes developed by the CWI team. amAdvisor is able to assist developers in choosing the right migration
patterns by mining from projects that invoke the new library version. Furthermore, amAdvisor exploits SOrec
to supply relevant StackOverflow discussions to developers.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 103

D6.5 The CROSSMINER Knowledge Base - Final Version

References

[1] Apache Lucene Core. https://lucene.apache.org/core/. last access 26.04.2019.

[2] Stackoverflow. https://stackoverflow.com/. last access 04.04.2019.

[3] Rabe Abdalkareem, Emad Shihab, and Juergen Rilling. On code reuse from stackoverflow: An ex-
ploratory study on android apps. Information and Software Technology, 88:148 – 158, 2017.

[4] Charu Aggarwal. Neighborhood-Based Collaborative Filtering, pages 29–70. Springer International
Publishing, Cham, 2016.

[5] Sylvain Arlot, Alain Celisse, et al. A survey of cross-validation procedures for model selection. Statis-
tics surveys, 4:40–79, 2010.

[6] M. F. Augusteijn and B. A. Folkert. Neural network classification and novelty detection. International
Journal of Remote Sensing, 23(14):2891–2902, 2002.

[7] Alessandra Bagnato et. al. Developer-centric knowledge mining from large open-source software repos-
itories (crossminer). In Software Technologies: Applications and Foundations, pages 375–384. Springer
International Publishing, 2018.

[8] Sebastian Baltes, Lorik Dumani, Christoph Treude, and Stephan Diehl. Sotorrent: Reconstructing and
analyzing the evolution of stack overflow posts. In Proceedings of the 15th International Conference on
Mining Software Repositories, MSR ’18, pages 319–330, New York, NY, USA, 2018. ACM.

[9] B. Basten, M. Hills, P. Klint, D. Landman, A. Shahi, M. J. Steindorfer, and J. J. Vinju. M3: A general
model for code analytics in rascal. In 2015 IEEE 1st International Workshop on Software Analytics
(SWAN), pages 25–28, March 2015.

[10] P. Behnamghader, R. Alfayez, K. Srisopha, and B. Boehm. Towards better understanding of software
quality evolution through commit-impact analysis. In 2017 IEEE International Conference on Software
Quality, Reliability and Security (QRS), pages 251–262, July 2017.

[11] Alejandro Bellogín, IváN Cantador, and Pablo Castells. A comparative study of heterogeneous item
recommendations in social systems. Inf. Sci., 221:142–169, February 2013.

[12] Amine Benelallam, Nicolas Harrand, César Soto-Valero, Benoit Baudry, and Olivier Barais. The maven
dependency graph: a temporal graph-based representation of maven central. CoRR, abs/1901.05392,
2019.

[13] Amine Benelallam, Nicolas Harrand, César Soto Valero, Benoit Baudry, and Olivier Barais. Maven
central dependency graph, November 2018. The Maven dependency graph is the fruit of a collab-
oration between the DiverSE team (Inria Rennes, France) and CASTOR project (KTH, Sweden).
Instructions on how to use and reproduce the dataset can be found in the dataset’s repository on
[Github](https://github.com/diverse-project /maven-miner). A complete description of the dataset and
usages can be found in the accompanying [paper] (https://arxiv.org/abs/1901.05392).

[14] Yoshua Bengio. Practical Recommendations for Gradient-Based Training of Deep Architectures, pages
437–478. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

Page 104 Version 1.0
Confidentiality: Public Distribution

28 June 2019

https://lucene.apache.org/core/
https://stackoverflow.com/

D6.5 The CROSSMINER Knowledge Base - Final Version

[15] Stefanie Beyer, Christian Macho, Martin Pinzger, and Massimiliano Di Penta. Automatically classifying
posts into question categories on stack overflow. In Proceedings of the 26th Conference on Program
Comprehension, ICPC ’18, pages 211–221, New York, NY, USA, 2018. ACM.

[16] Upasna Bhandari, Kazunari Sugiyama, Anindya Datta, and Rajni Jindal. Serendipitous recommendation
for mobile apps using item-item similarity graph. In Rafael E. Banchs, Fabrizio Silvestri, Tie-Yan Liu,
Min Zhang, Sheng Gao, and Jun Lang, editors, AIRS, volume 8281 of Lecture Notes in Computer
Science, pages 440–451. Springer, 2013.

[17] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, Inc., New
York, NY, USA, 1995.

[18] Vincent D. Blondel, Anahí Gajardo, Maureen Heymans, Pierre Senellart, and Paul Van Dooren. A
measure of similarity between graph vertices: Applications to synonym extraction and web searching.
SIAM Rev., 46(4):647–666, April 2004.

[19] Markus Borg, Per Runeson, Jens Johansson, and Mika V. Mäntylä. A replicated study on duplicate
detection: Using apache lucene to search among android defects. In Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, ESEM ’14, pages 8:1–
8:4, New York, NY, USA, 2014. ACM.

[20] H. Borges, A. Hora, and M. T. Valente. Understanding the factors that impact the popularity of github
repositories. In 2016 IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 334–344, Oct 2016.

[21] Léon Bottou. Stochastic gradient learning in neural networks. In In Proceedings of Neuro-Nîmes. EC2,
1991.

[22] Cristian E. Briguez, Maximiliano C.D. Budán, Cristhian A.D. Deagustini, Ana G. Maguitman, Marcela
Capobianco, and Guillermo R. Simari. Argument-based mixed recommenders and their application to
movie suggestion. Expert Systems with Applications, 41(14):6467 – 6482, 2014.

[23] Marcel Bruch, Thorsten Schäfer, and Mira Mezini. On evaluating recommender systems for api us-
ages. In Proceedings of the 2008 International Workshop on Recommendation Systems for Software
Engineering, RSSE ’08, pages 16–20, New York, NY, USA, 2008. ACM.

[24] Fidel Cacheda, Víctor Carneiro, Diego Fernández, and Vreixo Formoso. Comparison of collaborative
filtering algorithms: Limitations of current techniques and proposals for scalable, high-performance
recommender systems. ACM Trans. Web, 5(1):2:1–2:33, February 2011.

[25] Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. Density-based clustering based on
hierarchical density estimates. In Jian Pei, Vincent S. Tseng, Longbing Cao, Hiroshi Motoda, and
Guandong Xu, editors, Advances in Knowledge Discovery and Data Mining, pages 160–172, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[26] Andrea Capiluppi, Davide Di Ruscio, Juri Di Rocco, Phuong T. Nguyen, and Nemitari Ajienka. The
Effects of Clustering on the Characteristics of Java Software - manuscript under revision. Journal of
Systems and Software, 2019.

[27] Pablo Castells and Saúl Vargas. Novelty and diversity metrics for recommender systems: Choice, dis-
covery and relevance. In In Proceedings of International Workshop on Diversity in Document Retrieval
(DDR, pages 29–37.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 105

D6.5 The CROSSMINER Knowledge Base - Final Version

[28] Annie Chen. Context-aware collaborative filtering system: Predicting the user’s preference in the ubiq-
uitous computing environment. In Proceedings of the First International Conference on Location- and
Context-Awareness, LoCA’05, pages 244–253, Berlin, Heidelberg, 2005. Springer-Verlag.

[29] Ning Chen, Steven C.H. Hoi, Shaohua Li, and Xiaokui Xiao. Simapp: A framework for detecting
similar mobile applications by online kernel learning. In Proceedings of the Eighth ACM International
Conference on Web Search and Data Mining, WSDM ’15, pages 305–314, New York, NY, USA, 2015.
ACM.

[30] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
Natural language processing (almost) from scratch. J. Mach. Learn. Res., 12:2493–2537, November
2011.

[31] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations. In
Proceedings of the 10th ACM Conference on Recommender Systems, RecSys ’16, pages 191–198, New
York, NY, USA, 2016. ACM.

[32] Paolo Cremonesi, Roberto Turrin, Eugenio Lentini, and Matteo Matteucci. An evaluation methodol-
ogy for collaborative recommender systems. In Proceedings of the 2008 International Conference on
Automated Solutions for Cross Media Content and Multi-channel Distribution, AXMEDIS ’08, pages
224–231, Washington, DC, USA, 2008. IEEE Computer Society.

[33] Jonathan Crussell, Clint Gibler, and Hao Chen. Andarwin: Scalable detection of semantically similar
android applications. In Jason Crampton, Sushil Jajodia, and Keith Mayes, editors, Computer Security –
ESORICS 2013: 18th European Symposium on Research in Computer Security, Egham, UK, September
9-13, 2013. Proceedings, pages 182–199, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[34] Barthélémy Dagenais, Harold Ossher, Rachel K. E. Bellamy, Martin P. Robillard, and Jacqueline P.
de Vries. Moving into a new software project landscape. In Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ICSE ’10, pages 275–284, New York,
NY, USA, 2010. ACM.

[35] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In Proceed-
ings of the 23rd International Conference on Machine Learning, ICML ’06, pages 233–240, New York,
NY, USA, 2006. ACM.

[36] Lucas B. L. de Souza, Eduardo C. Campos, and Marcelo de A. Maia. Ranking crowd knowledge
to assist software development. In Proceedings of the 22Nd International Conference on Program
Comprehension, ICPC 2014, pages 72–82, New York, NY, USA, 2014. ACM.

[37] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao,
Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, and Andrew Y. Ng. Large scale dis-
tributed deep networks. In Proceedings of the 25th Int. Conf. on Neural Information Processing Systems
- Volume 1, NIPS’12, pages 1223–1231, USA, 2012. Curran Associates Inc.

[38] Tommaso Di Noia, Roberto Mirizzi, Vito Claudio Ostuni, Davide Romito, and Markus Zanker. Linked
open data to support content-based recommender systems. In Proceedings of the 8th International
Conference on Semantic Systems, I-SEMANTICS ’12, pages 1–8, New York, NY, USA, 2012. ACM.

[39] Juri Di Rocco, Phuong T. Nguyen, and Davide Di Ruscio. CrossRec tool and evaluation data, 2018.
https://doi.org/10.5281/zenodo.1252848.

Page 106 Version 1.0
Confidentiality: Public Distribution

28 June 2019

https://doi.org/10.5281/zenodo.1252848

D6.5 The CROSSMINER Knowledge Base - Final Version

[40] Ekwa Duala-Ekoko and Martin P. Robillard. Asking and Answering Questions About Unfamiliar APIs:
An Exploratory Study. In Proceedings of the 34th International Conference on Software Engineering,
ICSE ’12, pages 266–276, Piscataway, NJ, USA, 2012. IEEE Press.

[41] Jaroslav Fowkes and Charles Sutton. Parameter-free probabilistic api mining across github. In Proceed-
ings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE 2016, pages 254–265, New York, NY, USA, 2016. ACM.

[42] Pankaj K. Garg, Shinji Kawaguchi, Makoto Matsushita, and Katsuro Inoue. Mudablue: An automatic
categorization system for open source repositories. 2013 20th Asia-Pacific Software Engineering Con-
ference (APSEC), pages 184–193, 2004.

[43] Marko Gasparic and Andrea Janes. What recommendation systems for software engineering recom-
mend. J. Syst. Softw., 113(C):101–113, March 2016.

[44] Sanjoy Ghose and Oded Lowengart. Taste tests: Impacts of consumer perceptions and preferences on
brand positioning strategies. Journal of Targeting, Measurement and Analysis for Marketing, 10(1):26–
41, Aug 2001.

[45] Carlos A. Gomez-Uribe and Neil Hunt. The netflix recommender system: Algorithms, business value,
and innovation. ACM Trans. Manage. Inf. Syst., 6(4):13:1–13:19, December 2015.

[46] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. Deep Code Search. In 40th International Conference
on Software Engineering, pages 933–944, New York, 2018. ACM.

[47] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. Deep API Learning. In 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages 631–642,
New York, 2016. ACM.

[48] Guibing Guo, Jie Zhang, and Neil Yorke-Smith. A novel bayesian similarity measure for recommender
systems. In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence,
IJCAI ’13, pages 2619–2625. AAAI Press, 2013.

[49] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Witten.
The weka data mining software: An update. SIGKDD Explor. Newsl., 11(1):10–18, November 2009.

[50] Jerry L. Hintze and Ray D. Nelson. Violin plots: A box plot-density trace synergism. The American
Statistician, 52(2):181–184, 1998.

[51] Daniel S. Hirschberg. Algorithms for the longest common subsequence problem. J. ACM, 24(4):664–
675, October 1977.

[52] Angelos Hliaoutakis, Giannis Varelas, Epimenidis Voutsakis, Euripides G. M. Petrakis, and Evange-
los E. Milios. Information retrieval by semantic similarity. Int. J. Semantic Web Inf. Syst., 2(3):55–73,
2006.

[53] Reid Holmes, Robert J. Walker, and Gail C. Murphy. Strathcona example recommendation tool. In Pro-
ceedings of the 10th European Software Engineering Conference held jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2005, Lisbon, Portugal, September
5-9, 2005, pages 237–240, 2005.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 107

D6.5 The CROSSMINER Knowledge Base - Final Version

[54] Daqing Hou and Lingfeng Mo. Content categorization of api discussions. In Proceedings of the 2013
IEEE International Conference on Software Maintenance, ICSM ’13, pages 60–69, Washington, DC,
USA, 2013. IEEE Computer Society.

[55] F.O. Isinkaye, Y.O. Folajimi, and B.A. Ojokoh. Recommendation systems: Principles, methods and
evaluation. Egyptian Informatics Journal, 16(3):261 – 273, 2015.

[56] Anastasia Izmaylova, Paul Klint, Ashim Shahi, and Jurgen J. Vinju. M3: an open model for measuring
code artifacts. CoRR, abs/1312.1188, 2013.

[57] Paul Jaccard. The Distribution of the Flora in the Alpine Zone. New Phytologist, 11(2):37–50, 1912.

[58] Jing Jiang, David Lo, Jiahuan He, Xin Xia, Pavneet Singh Kochhar, and Li Zhang. Why and how
developers fork what from whom in github. Empirical Softw. Engg., 22(1):547–578, February 2017.

[59] George Karypis. Evaluation of item-based top-n recommendation algorithms. In Procs. of the Tenth
International Conf. on Information and Knowledge Management, CIKM ’01, pages 247–254, New
York, NY, USA, 2001. ACM.

[60] Nikolaos Katirtzis, Themistoklis Diamantopoulos, and Charles Sutton. Summarizing software api usage
examples using clustering techniques. In Alessandra Russo and Andy Schürr, editors, Fundamental
Approaches to Software Engineering, pages 189–206, Cham, 2018. Springer International Publishing.

[61] Houda Khrouf and Raphaël Troncy. Hybrid event recommendation using linked data and user diversity.
In Proceedings of the 7th ACM Conference on Recommender Systems, RecSys ’13, pages 185–192, New
York, NY, USA, 2013. ACM.

[62] Kisub Kim, Dongsun Kim, Tegawendé F. Bissyandé, Eunjong Choi, Li Li, Jacques Klein, and Yves Le
Traon. Facoy: a code-to-code search engine. In Michel Chaudron, Ivica Crnkovic, Marsha Chechik,
and Mark Harman, editors, Proceedings of the 40th International Conference on Software Engineering,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pages 946–957. ACM, 2018.

[63] Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conf.
on Empirical Methods in NLP, EMNLP 2014, October 25-29, 2014, Doha, Qatar, pages 1746–1751,
2014.

[64] P. Klint, T. v. d. Storm, and J. Vinju. Rascal: A domain specific language for source code analysis and
manipulation. In 2009 Ninth IEEE International Working Conference on Source Code Analysis and
Manipulation, pages 168–177, Sep. 2009.

[65] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In
Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI’95,
pages 1137–1143, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[66] Maxime Lamothe, Weiyi Shang, and Tse-Hsun Chen. A4: automatically assisting android API migra-
tions using code examples. CoRR, abs/1812.04894, 2018.

[67] Thomas K Landauer. Latent semantic analysis. Wiley Online Library, 2006.

[68] T.K. Landauer, P.W. Foltz, and D. Laham. An introduction to latent semantic analysis. Discourse
processes, 25:259–284, 1998.

Page 108 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

[69] Alexander LeClair, Zachary Eberhart, and Collin McMillan. Adapting neural text classification for
improved software categorization. CoRR, abs/1806.01742, 2018.

[70] Edda Leopold and Jörg Kindermann. Text categorization with support vector machines. How to repre-
sent texts in input space? Machine Learning, 46(1-3):423–444, 2002.

[71] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and W. Huo. Libd: Scalable and precise
third-party library detection in android markets. In 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE), pages 335–346, May 2017.

[72] Mario Linares-Vásquez, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Denys Poshy-
vanyk. How do api changes trigger stack overflow discussions? a study on the android sdk. In Proceed-
ings of the 22Nd International Conference on Program Comprehension, ICPC 2014, pages 83–94, New
York, NY, USA, 2014. ACM.

[73] Mario Linares-Vasquez, Andrew Holtzhauer, and Denys Poshyvanyk. On automatically detecting simi-
lar android apps. 2016 IEEE 24th International Conference on Program Comprehension (ICPC), 00:1–
10, 2016.

[74] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations: Item-to-item collabora-
tive filtering. IEEE Internet Computing, 7(1):76–80, January 2003.

[75] Erik Linstead, Sushil Krishna Bajracharya, Trung Chi Ngo, Paul Rigor, Cristina Videira Lopes, and
Pierre Baldi. Sourcerer: mining and searching internet-scale software repositories. Data Min. Knowl.
Discov., 18(2):300–336, 2009.

[76] Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. Gplag: Detection of software plagiarism by pro-
gram dependence graph analysis. In Proceedings of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’06, pages 872–881, New York, NY, USA, 2006.
ACM.

[77] David Lo, Lingxiao Jiang, and Ferdian Thung. Detecting similar applications with collaborative tagging.
In Proceedings of the 2012 IEEE International Conference on Software Maintenance (ICSM), ICSM
’12, pages 600–603, Washington, DC, USA, 2012. IEEE Computer Society.

[78] Fei Lv, Hongyu Zhang, Jian-Guang Lou, Shaowei Wang, Dongmei Zhang, and Jianjun Zhao. Codehow:
Effective code search based on API understanding and extended boolean model (E). In 30th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2015, Lincoln, NE, USA, November
9-13, 2015, pages 260–270, 2015.

[79] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. Libradar: Fast and accurate detection of
third-party libraries in android apps. In Proceedings of the 38th International Conference on Software
Engineering Companion, ICSE ’16, pages 653–656, New York, NY, USA, 2016. ACM.

[80] Yoëlle S. Maarek, Daniel M. Berry, and Gail E. Kaiser. An information retrieval approach for automat-
ically constructing software libraries. IEEE Trans. Softw. Eng., 17(8):800–813, August 1991.

[81] Ke Mao, Licia Capra, Mark Harman, and Yue Jia. A survey of the use of crowdsourcing in software
engineering. Journal of Systems and Software, 126:57 – 84, 2017.

[82] Collin McMillan, Mark Grechanik, and Denys Poshyvanyk. Detecting similar software applications. In
Proceedings of the 34th International Conference on Software Engineering, ICSE ’12, pages 364–374,
Piscataway, NJ, USA, 2012. IEEE Press.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 109

D6.5 The CROSSMINER Knowledge Base - Final Version

[83] Collin McMillan, Denys Poshyvanyk, and Mark Grechanik. Recommending source code examples via
api call usages and documentation. In Proceedings of the 2Nd International Workshop on Recommen-
dation Systems for Software Engineering, RSSE ’10, pages 21–25, New York, NY, USA, 2010. ACM.

[84] George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):39–41, November
1995.

[85] Catarina Miranda and Alípio M. Jorge. Incremental collaborative filtering for binary ratings. In Proceed-
ings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent
Technology - Volume 01, WI-IAT ’08, pages 389–392, Washington, DC, USA, 2008. IEEE Computer
Society.

[86] J. E. Montandon, H. Borges, D. Felix, and M. T. Valente. Documenting apis with examples: Lessons
learned with the apiminer platform. In 2013 20th Working Conference on Reverse Engineering (WCRE),
pages 401–408, Oct 2013.

[87] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Andrian Marcus. How
Can I Use This Method? In 37th International Conference on Software Engineering, pages 880–890,
Piscataway, 2015. IEEE.

[88] Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen, Lily Mast, Eli Rademacher,
Tien N. Nguyen, and Danny Dig. Api code recommendation using statistical learning from fine-grained
changes. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2016, pages 511–522, New York, NY, USA, 2016. ACM.

[89] Anh Tuan Nguyen and Tien N. Nguyen. Automatic categorization with deep neural network for open-
source java projects. In Proceedings of the 39th International Conference on Software Engineering
Companion, ICSE-C ’17, pages 164–166, Piscataway, NJ, USA, 2017. IEEE Press.

[90] P. T. Nguyen, J. Di Rocco, R. Rubei, and D. Di Ruscio. CrossSim: Exploiting Mutual Relationships
to Detect Similar OSS Projects. In 2018 44th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), pages 388–395, Aug 2018.

[91] Phuong T. Nguyen, Juri Di Rocco, and Davide Di Ruscio. Knowledge-aware recommender system for
software development. In Proceedings of the 1st Workshop on Knowledge-aware and Conversational
Recommender System, KaRS 2018, New York, NY, USA, 2018. ACM.

[92] Phuong T. Nguyen, Juri Di Rocco, and Davide Di Ruscio. Mining Software Repositories to Support
OSS Developers: A Recommender Systems Approach. In Proceedings of the 9th Italian Information
Retrieval Workshop, Rome, Italy, May, 28-30, 2018., 2018.

[93] Phuong T. Nguyen, Juri Di Rocco, and Davide Di Ruscio. Building Information Systems Using
Collaborative-Filtering Recommendation Techniques. In Henderik A. Proper and Janis Stirna, edi-
tors, Advanced Information Systems Engineering Workshops, pages 214–226, Cham, 2019. Springer
International Publishing.

[94] Phuong T. Nguyen, Juri Di Rocco, and Davide Di Ruscio. Enabling heterogeneous recommendations
in oss development: What’s done and what’s next in crossminer. In Proceedings of the Evaluation and
Assessment on Software Engineering, EASE ’19, pages 326–331, New York, NY, USA, 2019. ACM.

Page 110 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

[95] Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio, and Massimiliano Di Penta. CrossRec: Rec-
ommending highly relevant third-party libraries - manuscript under review. Journal of Systems and
Software, 2019.

[96] Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio, Lina Ochoa, Thomas Degueule, and Massimiliano
Di Penta. FOCUS: A Recommender System for Mining API Function Calls and Usage Patterns. In
Proceedings of the 41st International Conference on Software Engineering, ICSE ’19, pages 1050–
1060, Piscataway, NJ, USA, 2019. IEEE Press.

[97] Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio, Alfonso Pierantonio, and Ludovico Iovino. Au-
tomated Classification of Metamodel Repositories: A Machine Learning Approach. In Proceedings of
the 22nd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems
(to appear), MODELS 2019, Munich, Germany, September 14-19, 2019, 2019.

[98] Phuong T. Nguyen, Juri Di Rocco, Riccardo Rubei, and Davide Di Ruscio. An Automated Approach
to Assess the Similarity of GitHub Repositories - manuscript under revision. Software Quality Journal,
2019.

[99] Phuong T. Nguyen, Paolo Tomeo, Tommaso Di Noia, and Eugenio Di Sciascio. Content-based recom-
mendations via dbpedia and freebase: A case study in the music domain. In Proceedings of the 14th
International Conference on The Semantic Web - ISWC 2015 - Volume 9366, pages 605–621, New York,
NY, USA, 2015. Springer-Verlag New York, Inc.

[100] Phuong T. Nguyen, Paolo Tomeo, Tommaso Di Noia, and Eugenio Di Sciascio. An evaluation of
simrank and personalized pagerank to build a recommender system for the web of data. In Proceedings
of the 24th International Conference on World Wide Web, WWW ’15 Companion, pages 1477–1482,
New York, NY, USA, 2015. ACM.

[101] Michael A. Nielsen. Neural networks and deep learning, 2018.

[102] Haoran Niu, Iman Keivanloo, and Ying Zou. Api usage pattern recommendation for software develop-
ment. J. Syst. Softw., 129(C):127–139, July 2017.

[103] Haoran Niu, Iman Keivanloo, and Ying Zou. API Usage Pattern Recommendation for Software Devel-
opment. Journal of Systems and Software, 129(C):127–139, 2017.

[104] Tommaso Di Noia and Vito Claudio Ostuni. Recommender systems and linked open data. In Reasoning
Web. Web Logic Rules - 11th International Summer School 2015, Berlin, Germany, July 31 - August 4,
2015, Tutorial Lectures, pages 88–113, 2015.

[105] Ali Ouni, Raula Gaikovina Kula, Marouane Kessentini, Takashi Ishio, Daniel M. German, and Katsuro
Inoue. Search-based software library recommendation using multi-objective optimization. Inf. Softw.
Technol., 83(C):55–75, March 2017.

[106] Manos Papagelis and Dimitris Plexousakis. Qualitative analysis of user-based and item-based prediction
algorithms for recommendation agents. In Matthias Klusch, Sascha Ossowski, Vipul Kashyap, and
Rainer Unland, editors, Cooperative Information Agents VIII, pages 152–166, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg.

[107] Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-Anne Storey. Crowd documentation:
Exploring the coverage and the dynamics of api discussions on stack overflow. Georgia Institute of
Technology, Tech. Rep, 2012.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 111

D6.5 The CROSSMINER Knowledge Base - Final Version

[108] Michael J. Pazzani and Daniel Billsus. Content-Based Recommendation Systems, pages 325–341.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[109] Joaquín Pérez-Iglesias, José R. Pérez-Agüera, Víctor Fresno, and Yuval Z. Feinstein. Integrating the
probabilistic models BM25/BM25F into lucene. CoRR, abs/0911.5046, 2009.

[110] Simone Pettigrew and Stephen Charters. Tasting as a projective technique. Qualitative Market Research:
An International Journal, 11(3):331–343, 2008.

[111] L. Ponzanelli, A. Bacchelli, and M. Lanza. Seahawk: Stack overflow in the ide. In 2013 35th Interna-
tional Conference on Software Engineering (ICSE), pages 1295–1298, May 2013.

[112] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Michele Lanza. Mining
stackoverflow to turn the ide into a self-confident programming prompter. In Proceedings of the 11th
Working Conference on Mining Software Repositories, MSR 2014, pages 102–111, New York, NY,
USA, 2014. ACM.

[113] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Michele Lanza. Prompter
- turning the IDE into a self-confident programming assistant. Empirical Software Engineering,
21(5):2190–2231, 2016.

[114] Azzurra Ragone, Paolo Tomeo, Corrado Magarelli, Tommaso Di Noia, Matteo Palmonari, Andrea Mau-
rino, and Eugenio Di Sciascio. Schema-summarization in linked-data-based feature selection for rec-
ommender systems. In Proceedings of the Symposium on Applied Computing, SAC ’17, pages 330–335,
New York, NY, USA, 2017. ACM.

[115] R. Ranjan, S. Sankaranarayanan, C. D. Castillo, and R. Chellappa. An all-in-one convolutional neural
network for face analysis. In 2017 12th IEEE Int. Conf. on Automatic Face Gesture Recognition (FG
2017), pages 17–24, May 2017.

[116] David Reby, Sovan Lek, Ioannis Dimopoulos, Jean Joachim, Jacques Lauga, and Stéphane Aulagnier.
Artificial neural networks as a classification method in the behavioural sciences. Behavioural Processes,
40(1):35 – 43, 1997.

[117] Peter C. Rigby and Martin P. Robillard. Discovering essential code elements in informal documentation.
In 35th International Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May
18-26, 2013, pages 832–841, 2013.

[118] M. Robillard, R. Walker, and T. Zimmermann. Recommendation systems for software engineering.
IEEE Software, 27(4):80–86, July 2010.

[119] M. P. Robillard. What makes apis hard to learn? answers from developers. IEEE Software, 26(6):27–34,
Nov 2009.

[120] Martin P. Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan Ratchford. Automated
api property inference techniques. IEEE Trans. Softw. Eng., 39(5):613–637, May 2013.

[121] Martin P. Robillard, Walid Maalej, Robert J. Walker, and Thomas Zimmermann, editors. Recommen-
dation Systems in Software Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014. DOI:
10.1007/978-3-642-45135-5.

[122] Martin P. Robillard, Walid Maalej, Robert J. Walker, and Thomas Zimmermann. Recommendation
Systems in Software Engineering. Springer Publishing Company, Incorporated, 2014.

Page 112 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

[123] Raúl Rojas. Neural Networks: A Systematic Introduction. Springer-Verlag, Berlin, Heidelberg, 1996.

[124] Riccardo Rubei, Claudio Di Sipio, Phuong T. Nguyen, Juri Di Rocco, and Di Ruscio. Recommeding
highly relevant StackOverflow posts with boosted multi-facet queries - manuscript under review. In
34th IEEE/ACM International Conference on Automated Software Engineering, ASE 2019, San Diego,
California, USA, 2019.

[125] M. A. Saied, O. Benomar, H. Abdeen, and H. Sahraoui. Mining Multi-level API Usage Patterns. In
22nd International Conference on Software Analysis, Evolution, and Reengineering, pages 23–32, Pis-
cataway, 2015. IEEE.

[126] Mohamed Aymen Saied, Hani Abdeen, Omar Benomar, and Houari Sahraoui. Could We Infer Un-
ordered API Usage Patterns Only Using the Library Source Code? In 23rd International Conference on
Program Comprehension, pages 71–81, Piscataway, 2015. IEEE.

[127] Mohamed Aymen Saied, Ali Ouni, Houari Sahraoui, Raula Gaikovina Kula, Katsuro Inoue, and David
Lo. Improving reusability of software libraries through usage pattern mining. Journal of Systems and
Software, 145:164 – 179, 2018.

[128] Tefko Saracevic. Evaluation of evaluation in information retrieval. In Proceedings of the 18th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR
’95, pages 138–146, New York, NY, USA, 1995. ACM.

[129] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based Collaborative Filtering
Recommendation Algorithms. In 10th International Conference on World Wide Web, pages 285–295,
New York, 2001. ACM.

[130] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th International Conference on World Wide Web,
WWW ’01, pages 285–295, New York, NY, USA, 2001. ACM.

[131] J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. The adaptive web. chapter Collabora-
tive Filtering Recommender Systems, pages 291–324. Springer-Verlag, Berlin, Heidelberg, 2007.

[132] Claude E. Shannon. A mathematical theory of communication. Mobile Computing and Communications
Review, 5(1):3–55, 2001.

[133] Raphael Sirres, Tegawendé F. Bissyandé, Dongsun Kim, David Lo, Jacques Klein, Kisub Kim, and
Yves Le Traon. Augmenting and structuring user queries to support efficient free-form code search.
Empirical Software Engineering, 23(5):2622–2654, Oct 2018.

[134] D. Spinellis and C. Szyperski. How is open source affecting software development? IEEE Software,
21(1):28–33, Jan 2004.

[135] Daniel Svozil, Vladimir Kvasnicka, and Jiří Pospíchal. Introduction to multi-layer feed-forward neural
networks. Chemometrics and Intelligent Laboratory Systems, 39:43–62, 11 1997.

[136] Cédric Teyton, Jean-Rémy Falleri, Floréal Morandat, and Xavier Blanc. Find your library experts. In
2013 20th Working Conference on Reverse Engineering (WCRE), pages 202–211, Oct 2013.

[137] Suresh Thummalapenta and Tao Xie. Parseweb: A programmer assistant for reusing open source code
on the web. In Proceedings of the Twenty-second IEEE/ACM International Conference on Automated
Software Engineering, ASE ’07, pages 204–213, New York, NY, USA, 2007. ACM.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 113

D6.5 The CROSSMINER Knowledge Base - Final Version

[138] F. Thung, D. Lo, and J. Lawall. Automated library recommendation. In 2013 20th Working Conf. on
Reverse Engineering (WCRE), pages 182–191, Oct 2013.

[139] Ferdian Thung, Shaowei Wang, David Lo, and Julia Lawall. Automatic recommendation of api methods
from feature requests. In Proceedings of the 28th IEEE/ACM International Conference on Automated
Software Engineering, ASE’13, pages 290–300, Piscataway, NJ, USA, 2013. IEEE Press.

[140] Peter D. Turney and Patrick Pantel. From frequency to meaning: Vector space models of semantics. J.
Artif. Int. Res., 37(1):141–188, January 2010.

[141] Amos Tversky. Features of similarity. Psychological Review, 84(4):327–352, 1977.

[142] Secil Ugurel, Robert Krovetz, and C. Lee Giles. What’s the code?: Automatic classification of source
code archives. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’02, pages 632–638, New York, NY, USA, 2002. ACM.

[143] Saúl Vargas and Pablo Castells. Rank and relevance in novelty and diversity metrics for recommender
systems. In Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys ’11, pages
109–116, New York, NY, USA, 2011. ACM.

[144] Saúl Vargas and Pablo Castells. Improving sales diversity by recommending users to items. In Eighth
ACM Conference on Recommender Systems, RecSys ’14, Foster City, Silicon Valley, CA, USA - October
06 - 10, 2014, pages 145–152, 2014.

[145] Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. Wukong: A scalable and accurate two-phase
approach to android app clone detection. In Proceedings of the 2015 International Symposium on
Software Testing and Analysis, ISSTA 2015, pages 71–82, New York, NY, USA, 2015. ACM.

[146] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang. Mining Succinct and High-coverage API
Usage Patterns from Source Code. In 10th Working Conference on Mining Software Repositories, pages
319–328, Piscataway, 2013. IEEE.

[147] Jianyong Wang and Jiawei Han. Bide: Efficient mining of frequent closed sequences. In Proceedings of
the 20th International Conference on Data Engineering, ICDE ’04, pages 79–, Washington, DC, USA,
2004. IEEE Computer Society.

[148] Frank Wilcoxon. Individual Comparisons by Ranking Methods, pages 196–202. Springer New York,
New York, NY, 1992.

[149] Lili Wu, Sam Shah, Sean Choi, Mitul Tiwari, and Christian Posse. The browsemaps: Collaborative
filtering at linkedin. In RSWeb@RecSys, volume 1271 of CEUR Workshop Proceedings. CEUR-WS.org,
2014.

[150] Xin Xia, David Lo, Xinyu Wang, and Bo Zhou. Tag recommendation in software information sites. In
Proceedings of the 10th Working Conference on Mining Software Repositories, MSR ’13, pages 287–
296, Piscataway, NJ, USA, 2013. IEEE Press.

[151] Yunwen Ye and Gerhard Fischer. Supporting reuse by delivering task-relevant and personalized infor-
mation. In Proceedings of the 24th International Conference on Software Engineering, ICSE ’02, pages
513–523, New York, NY, USA, 2002. ACM.

Page 114 Version 1.0
Confidentiality: Public Distribution

28 June 2019

D6.5 The CROSSMINER Knowledge Base - Final Version

[152] A. Zagalsky, O. Barzilay, and A. Yehudai. Example overflow: Using social media for code recommen-
dation. In 2012 Third International Workshop on Recommendation Systems for Software Engineering
(RSSE), pages 38–42, June 2012.

[153] Wei Zeng, An Zeng, Hao Liu, Ming-Sheng Shang, and Tao Zhou. Uncovering the information core in
recommender systems. Scientific reports, 4:6140, 2014.

[154] Guoqiang Zhang, B. Eddy Patuwo, and Michael Y. Hu. Forecasting with artificial neural networks::
The state of the art. International Journal of Forecasting, 14(1):35–62, 1998.

[155] Yun Zhang, David Lo, Pavneet Singh Kochhar, Xin Xia, Quanlai Li, and Jianling Sun. Detecting similar
repositories on github. 2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), 00:13–23, 2017.

[156] Zhi-Dan Zhao and Ming-sheng Shang. User-based collaborative-filtering recommendation algorithms
on hadoop. In Proceedings of the 2010 Third International Conference on Knowledge Discovery and
Data Mining, WKDD ’10, pages 478–481, Washington, DC, USA, 2010. IEEE Computer Society.

[157] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. MAPO: Mining and Recommending API Us-
age Patterns. In 23rd European Conference on Object-Oriented Programming, pages 318–343, Berlin,
Heidelberg, 2009. Springer.

[158] Bo Zhou, Xin Xia, David Lo, Cong Tian, and Xinyu Wang. Towards more accurate content categoriza-
tion of api discussions. In Proceedings of the 22Nd International Conference on Program Comprehen-
sion, ICPC 2014, pages 95–105, New York, NY, USA, 2014. ACM.

28 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 115

	Introduction
	Summary
	Document Structure

	Literature Review
	Software Similarity
	API Usage Recommendations
	Library Recommendations
	Mining StackOverflow to support software development
	Classification of StackOverflow posts
	Neural Networks in Software Engineering

	The CROSSMINER Recommender Systems
	Recommendation of project alternatives with similar APIs
	Proposed Approach
	Evaluation

	API function calls and usage patterns recommendation
	Overview
	Architecture
	Data Representation
	Similarity Computation
	API function calls recommendation
	API usage patterns recommendation
	Evaluation
	Datasets
	Methodology

	Result Analysis

	Third-party libraries recommendation
	Overview
	Architecture
	Data Encoder
	Similarity Calculator
	Recommendation Engine
	Evaluation
	Dataset
	Evaluation metrics
	Evaluation Methodology

	Result Analysis
	Threats to Validity
	Discussions
	Conclusions and Future Work

	Recommendation of StackOverflow Posts
	Overview
	Background and Motivations
	Proposed Approach
	Index Creation
	Query Creation
	Query Execution

	Evaluation
	Dataset
	User studies
	Evaluation metrics
	Research questions

	Experimental Results
	Threats to validity

	Categorization of Relevant API Discussions
	Feed-forward Neural Networks
	System Architecture
	Evaluation
	Datasets
	Evaluation Metrics

	Results
	Threats to validity

	Mining API Migration Patterns
	Use Case
	Proposed Approach
	Architecture
	Recommending relevant function calls and code snippets

	Mining cross-project dependencies to discover API migration samples
	AeTheReal
	Analysis Results

	The Knowledge Base
	Overview
	Use Cases
	Datasets
	Technology Dependencies
	REST API
	Get analyzed projects
	Get analyzed project by id
	Get projects by metric provider platform id
	Search analyzed projects
	Add a new GitHub project to the analyzed projects
	Store developer activity metrics
	Get alternatives projects
	Get relevant StackOverflow posts
	Get third-party libraries
	Get API function calls
	Get API usage patterns
	Get clustered projects
	Get cluster containing a particular project
	Get migration client pairs examples
	Get clients using a particular library version
	Get StackOverflow posts related to discussions about API migration
	Get impact on library evolution
	Get useful code snippets to migrate towards a new library version

	Conclusions

