

Project Partners: Athens University of Economics & Business, Bitergia, Castalia Solutions,
Centrum Wiskunde & Informatica, Eclipse Foundation Europe, Edge Hill
University, FrontEndART, OW2, SOFTEAM, The Open Group, University of
LôAquila, University of York, Unparallel Innovation

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

CROSSMINER Project Partners accept no liability for any error or omission in the same.

© 2019 Copyright in this document remains vested in the CROSSMINER Project Partners.

Project Number 732223

D5.5 Workflow Development Tools - Final Version

Version 2.0

30 June 2019

Final

Public Distribution

University of York

D5.5 Workflow Development Tools - Final Version

Page ii Version 2.0 30 June 2019

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

Athens University of Economics & Business

Diomidis Spinellis

Patision 76

104-34 Athens

Greece

Tel: +30 210 820 3621

E-mail: dds@aueb.gr

Bitergia

José Manrique Lopez de la Fuente

Calle Navarra 5, 4D

28921 Alcorcón Madrid

Spain

Tel: +34 6 999 279 58

E-mail: jsmanrique@bitergia.com

Castalia Solutions

Boris Baldassari

10 Rue de Penthièvre

75008 Paris

France

Tel: +33 6 48 03 82 89

E-mail: boris.baldassari@castalia.solutions

Centrum Wiskunde & Informatica

Jurgen J. Vinju

Science Park 123

1098 XG Amsterdam

Netherlands

Tel: +31 20 592 4102

E-mail: jurgen.vinju@cwi.nl

Eclipse Foundation Europe

Philippe Krief

Annastrasse 46

64673 Zwingenberg

Germany

Tel: +33 62 101 0681

E-mail: philippe.krief@eclipse.org

Edge Hill University

Yannis Korkontzelos

St Helens Road

Ormskirk L39 4QP

United Kingdom

Tel: +44 1695 654393

E-mail: yannis.korkontzelos@edgehill.ac.uk

FrontEndART

Rudolf Ferenc

Zászló u. 3 I./5

H-6722 Szeged

Hungary

Tel: +36 62 319 372

E-mail: ferenc@frontendart.com

OW2 Consortium

Cedric Thomas

114 Boulevard Haussmann

75008 Paris

France

Tel: +33 6 45 81 62 02

E-mail: cedric.thomas@ow2.org

SOFTEAM
Alessandra Bagnato

21 Avenue Victor Hugo

75016 Paris

France

Tel: +33 1 30 12 16 60

E-mail: alessandra.bagnato@softeam.fr

The Open Group

Scott Hansen

Rond Point Schuman 6, 5
th
 Floor

1040 Brussels

Belgium

Tel: +32 2 675 1136

E-mail: s.hansen@opengroup.org

University of LôAquila

Davide Di Ruscio

Piazza Vincenzo Rivera 1

67100 L'Aquila

Italy

Tel: +39 0862 433735

E-mail: davide.diruscio@univaq.it

University of York

Dimitris Kolovos

Deramore Lane

York YO10 5GH

United Kingdom

Tel: +44 1904 325167

E-mail: dimitris.kolovos@york.ac.uk

Unparallel Innovation

Bruno Almeida

Rua das Lendas Algarvias, Lote 123

8500-794 Portimão

Portugal

Tel: +351 282 485052

E-mail: bruno.almeida@unparallel.pt

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

1.1 Full draft version 14 June 2019

1.2 Further updates and final for internal review 24 June 2019

2.0 Final Version 30 June 2019

D5.5 Workflow Development Tools - Final Version

Page iv Version 2.0 30 June 2019

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 1

1.1 Motivation ... 1

1.2 Outline ... 2

2. Crossflow Workflow Language.. 3

2.1 Running Example .. 4

2.2 Code Generation ... 4

3. Graphical Workflow Modeling .. 7

3.1 Background ... 7

3.2 Crossflow Graphical Model Editor (EuGENia-based) ... 7

3.2.1 Editor Updates .. 8
4. Textual Workflow Modeling .. 11

4.1 Background ... 11

4.2 Crossflow Textual Model Editor (Xtext-based) ... 12

4.2.1 Editor Updates .. 15

4.3 Crossflow XML-based Model Editing (Flexmi) ... 16

5. Workflow Deployment, Execution, and Monitoring .. 17

5.1 Crossflow Model Deployment and Execution (Eclipse) .. 17

5.2 Crossflow Model Deployment, Execution, Monitoring, and Management (Web-based) 18

5.3 Crossflow Worker Execution (CLI) ... 26

6. Installation Guides .. 28

6.1 Crossflow Graphical Editor Installation and Launch ... 28

6.2 Crossflow Textual Editor Installation and Launch.. 28

6.3 Crossflow Web Application Installation and Launch .. 29

7. Conclusion and Future Work .. 31

Table on final status of use-case partner requirements for WP5 ... 32

Table on final status of technology requirements for WP5 ... 33

REFERENCES ... 34

Appendix A: Crossflow Graphical Modeling Language Definition (crossflow.emf) .. 35

Appendix B: Crossflow Textual Workflow Modeling Language Definition (Crossflow.xtext) 37

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page v

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

Work package 5 (WP5) aims at creating a framework for supporting the development of

high-performance declarative open-source project analysis workflows. This is

underpinned by Crossflowða domain-specific language capable of expressing open-

source project analysis workflows in a high level of abstraction. Creation and execution

of Crossflow workflows is aided by an Eclipse-based graphical editor and a browser-

based interface providing feedback during and after the execution of the workflow,

respectively. Workflows are executed through a scalable execution engine, capable of

both parallel and distributed execution that is running against code generated using

appropriate model transformation languages to executable code.

This document expands upon D5.3 by providing details into the current implementation

of Crossflow by means of an Eclipse-based graphical model editor as well as by

presenting new components that include a browser-based workflow deployment,

monitoring, and execution-management interface. First, it presents an exemplary use

case showcasing the creation of a Crossflow workflow model, the generation of base

classes from such a model, as well as the specification of fine-grained behaviour

through implementations extending generated code. Secondly, it presents packaging and

deployment of Crossflow workflows as well as their monitoring and execution-

management during runtime.

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 1

Confidentiality: Public Distribution

1. INTRODUCTION

This document will present the development tools of the workflow component of CROSSMINER.

Workflows allow for the definition of bespoke analysis algorithms in a high-level domain-specific

language and require the creation of appropriate tools to create, manipulate, generate and monitor

them and their execution.

Figure 1 depicts the integration of Crossflow in the Crossminer architecture. On one hand,

workflow specifications, i.e. Crossflow models created by the employing workflow development

tools described in Sections 3-4 of this document, can be executed by metric providers by

instantiating the Crossflow Java API. On the other hand, Crossflow workflow tasks can retrieve

data from the Crossminer knowledge base REST API (cf. Section 9.4 in D6.5). In more detail, data

from the knowledge base can be retrieved within the context of a Crossflow workflow by

submission of HTTP GET/POST requests that are coded into workflow tasks and triggered during

their workflow execution (cf. Figure 36 in D6.5).

1.1 MOTIVATION

Two important factors when measuring the effectiveness of a software process or product are the

level of abstraction and the level of reusability. Important aspects in this regard include increasing

REST API

 Web Application

CROSSMINER Platform

Metric Providers

Data Bases File System

Persistence

Source code analysis

System configuration analysis

DevOps Dashboard
Advanced integrated development

Environments (IDE)

Natural language analysis

OSSMETER

COMPONENTS

CROSSMINER

COMPONENTS

OSSMETER COMPONENTS
REFACTORED IN CROSSMINER

Fact Providers

Workflow

based
knowledge

extractors

(Crossflow)

Cross project
relationship

analysis

DevOps

Backend

Figure 1: Integration of Crossflow in Crossminer architecture.

D5.5 Workflow Development Tools - Final Version

Page 2 Version 2.0 30 June 2019

Confidentiality: Public Distribution

the developer's productivity, decreasing the cost of software construction while preserving the de-

sired quality and improving the reusability and maintainability of software.

Model Driven Development (MDD), is an approach to software development elevating models to

first-class citizens of the process (Mohagheghi, Fernandez, Martell, Fritzsche, & Gilani, 2009). As

such, it is focused on the creation of semantically-rich models encapsulating the problem and/or

solution domains, while leaving the execution domain to model-based code generators.

Such models can be based on a graphical or textual representation (or a mixture of both) and be

supported by graphical or textual design tools. These tools can either be generic and bound to a

high-level abstract domain (such as object graphs), hence requiring more effort to describe do-

main-specific concepts or are bound to the domain and cannot be used for any other purpose. As

such, it is both important to choose the appropriate level of abstraction and the type of representa-

tion for the domain in question.

1.2 OUTLINE

Modeling language editors are commonly split into three categories: graphical, textual, and hybrid;

in D5.3 we presented an overview of those categories and their core differences. In this deliverable

we briefly describe the selection of tools and frameworks upon which Crossflow editor

implementations are built. Moreover, we present the current state of the Crossflow graphical and

textual editor implementation in detail and alongside a running example. Next, we present the

Crossflow web application enabling deployment, monitoring, and management of workflow

execution in web browser environments.

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 3

Confidentiality: Public Distribution

2. CROSSFLOW WORKFLOW LANGUAGE

This section provides a short overview of the Crossflow language (Kolovos, Neubauer, Barmpis,

Matragkas, & Paige, 2019) by describing its concepts and thus updating earlier deliverables such as

D5.1. The Crossflow language is defined by the Crossflow Ecore metamodel (cf. simplified version

in Figure 2) that is referenced by both graphical and textual language implementation of Crossflow

presented in Section 3.2 and 4.2, respectively, as well as used by the Crossflow code generator to

produce strongly-typed scaffolding Java code from workflow models.

Figure 2: Simplified version of the Crossflow language metamodel (crossflow.ecore).

Workflow. In detail, instances of a Crossflow Workflow may contain types , streams , tasks ,

and languages .

Type. Instances of Type represent data types and may specify multiplicity (isMany attribute),

existing (or intended) implementations through the value of the impl attribute as well as instances

of Field detailed by a name, multiplicity (isMany attribute), and type .

Stream. Instances of Stream either represent queues or topics in a workflow model. Streams

manifest either as instances of Queue or Topic and receive input from tasks as well as produce

output for tasks. Queues and topics are following the point-to-point and publish-subscribe

subscription model, respectively.

Task. Instances of Task are defined by name, execution restriction to only allow the master node to

execute them (masterOnly attribute), and output multiplicity (multipleOutputs attribute).

Moreover, tasks may manifest as instances of Source or Sink . Sources and sinks produce input

and output for their containing workflow, respectively.

Language. Instances of Language are defined by name, package, generated source code output

directory (outputFolder attribute), and generated base source code output directory

(genOutputFolder attribute). Moreover, languages may own parameters. Instance of Parameter

are defined by name and value to represent additional information required by a particular

language. For example, the Python language requires the specification of a parameter named

module for modularization, i.e. splitting programs into several programs to enable reuse and ease

maintenance.

D5.5 Workflow Development Tools - Final Version

Page 4 Version 2.0 30 June 2019

Confidentiality: Public Distribution

2.1 RUNNING EXAMPLE

This subsection provides a brief introduction of the running example appearing throughout the

remaining sections of the document.

In summary, the initial activity in the running example, i.e. TechnologySource in Figure 3,

entails reading tuples consisting of keyword and file extension from a comma separated file

(CSV). Next, the CodeSearcher activity involves looking for instances of files from specific

modeling technologies on GitHub, i.e. by using their file extensions and a keyword contained in

the file as the matching metric. The repositories containing such files are then cloned locally and

various analysis steps are performed to calculate the number of repositories, files and authors for

each such technology (cf. RepositorySearche r). Finally, this analysis data is aggregated and

output to console (cf. Repository ResultSin k).

More specifically, the first time the example workflow is executed in a distributed setup, different

worker nodes will end up with different cloned Git repositories as a result of the execution of their

repository search tasks (cf. RepositorySearch Dispatcher). The next time the workflow is

executed (e.g. after a bug fix or after adding more technologies to the input CSV file), repository

search jobs, i.e. executing queries to the GitHub API, are routed to nodes that already have clones

of relevant repositories from the previous execution (if available). Thus, unnecessary cloning of

the same repositories in different nodes as required by subsequent repository analysis jobs, i.e.

requiring access to repository clones, is prevented.

Figure 3: Crossflow Running Example Activity Diagram.

2.2 CODE GENERATION

The capability of generating base classes and executables from models created by either one of the

Crossflow editors (cf. 3.2 and 4.2) has been made available to the Eclipse environment through

context menu entries. Note that this capability requires the installation of Crossflow as outlined in

Section 60. Moreover, make sure that Crossflow executables have been created beforehand

Crossflow models, i.e. files with the extension crossflow_diagram and crossflow_model , can

be employed for base class code generation by right-click and selection of ñCrossflowò followed

by ñGenerate CROSSFLOW Base Classesò in the Package Explorer view (cf. Figure 4). In detail,

this will generate base classes and skeletons of implementations classes in the location defined by

the property ñGen Output Folderò and ñOutput Folderò of Language instances, respectively (cf.

Figure 5). The keywords outputFolder and genOutputFolder of Language instances in

textual Crossflow models serve the equivalent purpose (cf. Figure 6).

TechnologySource

RepositoryResultSink

RepositorySearchDispatcher

RepositorySearcher

CodeSearcher

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 5

Confidentiality: Public Distribution

Figure 4: Crossflow context menu in Eclipse Package Explorer view.

Figure 5: Running example workflow Java Language specification in Properties view.

Figure 6: Running example workflow Java Language specification in Crossflow textual model editor.

Additionally, a folder named ñexperimentò is created containing workflow input and output data

directories, a web browser-based representation of the Crossflow model for the web browser

(abstract.graph), and a configuration file for the Crossflow model deployment, execution,

monitoring, and management web application (experiment.xml).

Finally, the generation of executables of the selected Crossflow model as well as their assembly

into a ready-to-deploy ZIP archive is accomplished by right-clicking on the Crossflow model in

the Package Explorer view and selecting ñCrossflowò followed by ñGenerate Deployment

Artifactsò. Figure 7 shows the running example in the Package Explorer in its ready-to-deploy

state.

D5.5 Workflow Development Tools - Final Version

Page 6 Version 2.0 30 June 2019

Confidentiality: Public Distribution

Figure 7: Running example project ready-to-deploy state in Package Explorer view.

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 7

Confidentiality: Public Distribution

3. GRAPHICAL WORKFLOW MODELING

This section provides background on graphical editors and in particular EuGENia
1
 (Kolovos,

García-Domínguez, Rose, & Paige, 2017) and GMF, i.e. the open-source (modeling) language

graphical editor creation tool chosen to implement the Crossflow graphical editor. Crossflow is the

domain-specific language created for constructing and editing workflows in CROSSMINER and is

described in D5.2, Section 2.

3.1 BACKGROUND

Graphical editors focus on the use of shapes and images to provide a high-level representation of

the domain model. Such editors often provide common graphics-related functionalities like

inserting, deleting, moving and resizing graphical elements, which are directly linked to the

domain model elements themselves; as such, any domain-level changes made in these graphical

elements (such as the addition of a reference to another element) will be mirrored in the relevant

domain model elements.

This type of editor is well suited for rapid creation/prototyping of models from small- to medium-

sized languages with the use of drag-and-drop or copy-paste techniques. When the language starts

becoming sufficiently large, graphical editors may end up overtly complex to use, as finding

appropriate elements or connections in the UI may start becoming laborious. Similarly, when the

model itself is sufficiently large, navigating such a visual space may end up taking substantial

amounts of time and effort. Techniques like views and filters can alleviate some of these concerns

but the core issue of managing large models in a graphical environment is a complex one,

nevertheless.

EuGENia. EuGENia (Kolovos, García-Domínguez, Rose, & Paige, 2017) is a graphical editor

generation language as part of the Epsilon
2
 modeling suite. It is described as a front-end to GMF,

aimed at speeding up the process of creating GMF-based graphical editors. Simple editors can be

generated with the addition of a small number of annotations to the language (metamodel)

denoting which elements are to be represented visually in the diagram (and which shape they will

be), which references in the language (from one element to another) are to be visible, which

element represents the diagram itself, etc. Further enhancements to the editor can be achieved in

multiple ways, such as by editing the generated Java code of the editor and adding any custom

logic regarding the representation of any diagram elements and their interactions, as well as any

additional UI elements that may be useful for the current domain. An alternative is to create a

polishing transformation (written in the Epsilon Object Language
3
) that has access to and can

manipulate both the language model and the graphical model that is used to create the generated

editor.

3.2 CROSSFLOW GRAPHICAL MODEL EDITOR (EUGENIA -BASED)

In order to use EuGENia to generate a graphical editor for Crossflow, the Crossflow language had

to be augmented with relevant annotations denoting the various visual semantics of each element.

Details on concepts available in the Crossflow language are described in Section 2. Moreover,

1
 https://www.eclipse.org/epsilon/doc/EuGENia/

2
 https://www.eclipse.org/epsilon/

3
 https://www.eclipse.org/epsilon/doc/eol/

D5.5 Workflow Development Tools - Final Version

Page 8 Version 2.0 30 June 2019

Confidentiality: Public Distribution

Appendix A: Crossflow Graphical Modeling Language Definition (crossflow.emf) provides a

complete copy of the Crossflow graphical workflow modelling language definition, i.e. by means

of crossflow.emf, that is current as by the time of the submission of this document. It shows a

textual representation of the enhanced language, including the aforementioned annotations.

3.2.1 Editor Updates

In comparison to the previous version of the editor (cf. Figure 8), the current version of the editor

(cf. Figure 9) reflects the following adjustments:

ü The graphical element of queues has been customized by replacing the circle shape with the

shape of a cylinder.

ü The graphical element of sources and sinks has been customized by replacing the shape of

rounded rectangles with trapezoids.

ü The rectangularly-shaped concept of Language and fields to select the language for instances

of tasks, i.e. including Source and Si nk , i.e. specific forms of Task , has been introduced to

conform to the latest version of the Crossflow metamodel.

Figure 8: Running example workflow visualized in the previous version of the Crossflow graphical model editor (cf.
D5.3).

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 9

Confidentiality: Public Distribution

Figure 9: Running example workflow visualized in the current version of the Crossflow graphical mod-
el editor.

The Crossflow Diagram Edit ing editor enables populating Crossflow graphical models, i.e.

files with the extension .crossflow_ diagram , with elements of the Crossflow language by the

use of the editorôs palette panel and properties view. For example, the task RepositorySearcher

D5.5 Workflow Development Tools - Final Version

Page 10 Version 2.0 30 June 2019

Confidentiality: Public Distribution

of type CommitmentTask uses a configuration of type TechnologyCollection and produces

multiple outputs to the RepositoryResults queue (cf. Figure 10).

Figure 10: Crossflow Graphical Editor palette panel and properties view usage example.

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 11

Confidentiality: Public Distribution

4. TEXTUAL WORKFLOW MODELING

This section provides background on textual editors and in particular Xtext
4
 (Eysholdt & Behrens,

2010), i.e. the open-source (modeling) language textual editor creation tool chosen to implement the

Crossflow textual editor, and Flexmi
5
 (Kolovos, Matragkas, & Garcia-Dominguez, Towards

Flexible Parsing of Structured Textual Model Representations, 2016). Crossflow is the domain-

specific language created for constructing and editing workflows in CROSSMINER and is

described in D5.3, Section 3.

4.1 BACKGROUND

Textual editors focus on using structured text for managing domain models. This text is often a

simplified view of the domain elements themselves, often augmented with small textual or

graphical queues to aid the understanding of the structure. Such editors often offer a tree-based

view of the model, whereby each domain element is displayed as a separate line of text, containing

any of its features nested inside it; other views can include table views, commonly used for editing

the features of domain elements.

This type of editor can easily represent the containment structure of a model and offers an

alternative development approach for those more adept at creating text-based documents. Whilst

textual editors can show the structure of arbitrarily large models, managing such models can still

remain challenging as one may need to find and manipulate specific elements in the model that

they may not be able to uniquely identify without navigating a large portion of the model itself.

Xtext. To support the development of textual Domain-Specific Modeling Languages (DSMLs)

(Kelly & Tolvanen, 2008), frameworks, such as Xtext (Eysholdt & Behrens, 2010), emerged,

enabling language designers to ease and speed-up language development by leveraging advances

in editor technology of mainstream IDEs. Such frameworks automate, for instance, the creation of

language specific parsers, serializers, and editors providing basic syntax highlighting, content-

assist, folding, jump-to-declaration, and reverse reference lookup across multiple files.

The kind of language created by employing Xtext, which relies on the EMF, can range from small

DSMLs to fully-blown General Purpose Languages (GPL). This also includes textual

configurations files or human-readable requirement documents. The motivation of Xtext is to

automate the generation of basic tooling support for language specifications and thus increase

readability, writability, and understandability of documents written in those languages.

Starting with a grammar definition, Xtext generates a parser, serializer and a basic editor

implementation for the specified language. Moreover, generated artifacts can be adapted via

dependency injection and the use of the Xtext API. Thus, generated artifacts can include

customized implementations, such as for validation and linking/scoping.

Flexmi. Flexmi is a flexible algorithm for parsing well-formed XML documents into Ecore

metamodel-conforming in-memory models. The parser developed for Flexmi performs a depth-

first traversal of the elements in the XML document, expects to find a nsuri processing instruction,

i.e. declaring a unique namespace identifier, and employs a stack to keep track of its position

during document parsing. The Flexmi implementation also includes a renderer that is accessible as

an Eclipse view named ñFlexmi Rendererò.

4
 http://www.xtext.org

5
 https://www.eclipse.org/epsilon/doc/articles/flexmi/

D5.5 Workflow Development Tools - Final Version

Page 12 Version 2.0 30 June 2019

Confidentiality: Public Distribution

4.2 CROSSFLOW TEXTUAL MODEL EDITOR (XTEXT -BASED)

In this section we present the Crossflow textual DSML, i.e. conforming to the structural compo-

nents of the Crossflow language as defined by the Crossflow metamodel (cf. Figure 2).

Appendix A: Crossflow Graphical Modeling Language Definition (crossflow.emf) provides a

complete copy of the language grammar that is current as by the time of the submission of this

document.

The Crossflow Editor editor enables populating Crossflow textual models, i.e. files with the

extension .crossflow_ model , with elements of the Crossflow language either by inserting

textual tokens or by using of the editorôs content assist feature accessible through the keyboard

shortcut CTRL + Space followed by the selection of an element offered by the displayed list of

viable textual tokens to be inserted at the current position of the cursor. For example, selecting

CodeSearcher as viable value for the Repositories queueôs outputOf attribute (cf. Figure

11).

Figure 11: Crossflow Textual Editor content assist
usage example.

Moreover, the editor offers validation and quick fix features. The former is triggered as a result of

any change performed to the textual model. The latter is accessible by clicking on the light bulb

error indicator and selecting an appropriate solution (cf. Figure 12).

Figure 12: Crossflow Textual Editor validation
and quick fix usage example.

