

Project Partners: Athens University of Economics & Business, Bitergia, Castalia Solutions,
Centrum Wiskunde & Informatica, Eclipse Foundation Europe, Edge Hill
University, FrontEndART, OW2, SOFTEAM, The Open Group, University of
L’Aquila, University of York, Unparallel Innovation

Every effort has been made to ensure that all statements and information contained herein are accurate, however the

CROSSMINER Project Partners accept no liability for any error or omission in the same.

© 2019 Copyright in this document remains vested in the CROSSMINER Project Partners.

Project Number 732223

D5.5 Workflow Development Tools - Final Version

Version 2.0

30 June 2019

Final

Public Distribution

University of York

D5.5 Workflow Development Tools - Final Version

Page ii Version 2.0 30 June 2019

Confidentiality: Public Distribution

PROJECT PARTNER CONTACT INFORMATION

Athens University of Economics & Business

Diomidis Spinellis

Patision 76

104-34 Athens

Greece

Tel: +30 210 820 3621

E-mail: dds@aueb.gr

Bitergia

José Manrique Lopez de la Fuente

Calle Navarra 5, 4D

28921 Alcorcón Madrid

Spain

Tel: +34 6 999 279 58

E-mail: jsmanrique@bitergia.com

Castalia Solutions

Boris Baldassari

10 Rue de Penthièvre

75008 Paris

France

Tel: +33 6 48 03 82 89

E-mail: boris.baldassari@castalia.solutions

Centrum Wiskunde & Informatica

Jurgen J. Vinju

Science Park 123

1098 XG Amsterdam

Netherlands

Tel: +31 20 592 4102

E-mail: jurgen.vinju@cwi.nl

Eclipse Foundation Europe

Philippe Krief

Annastrasse 46

64673 Zwingenberg

Germany

Tel: +33 62 101 0681

E-mail: philippe.krief@eclipse.org

Edge Hill University

Yannis Korkontzelos

St Helens Road

Ormskirk L39 4QP

United Kingdom

Tel: +44 1695 654393

E-mail: yannis.korkontzelos@edgehill.ac.uk

FrontEndART

Rudolf Ferenc

Zászló u. 3 I./5

H-6722 Szeged

Hungary

Tel: +36 62 319 372

E-mail: ferenc@frontendart.com

OW2 Consortium

Cedric Thomas

114 Boulevard Haussmann

75008 Paris

France

Tel: +33 6 45 81 62 02

E-mail: cedric.thomas@ow2.org

SOFTEAM
Alessandra Bagnato

21 Avenue Victor Hugo

75016 Paris

France

Tel: +33 1 30 12 16 60

E-mail: alessandra.bagnato@softeam.fr

The Open Group

Scott Hansen

Rond Point Schuman 6, 5
th

 Floor

1040 Brussels

Belgium

Tel: +32 2 675 1136

E-mail: s.hansen@opengroup.org

University of L’Aquila

Davide Di Ruscio

Piazza Vincenzo Rivera 1

67100 L'Aquila

Italy

Tel: +39 0862 433735

E-mail: davide.diruscio@univaq.it

University of York

Dimitris Kolovos

Deramore Lane

York YO10 5GH

United Kingdom

Tel: +44 1904 325167

E-mail: dimitris.kolovos@york.ac.uk

Unparallel Innovation

Bruno Almeida

Rua das Lendas Algarvias, Lote 123

8500-794 Portimão

Portugal

Tel: +351 282 485052

E-mail: bruno.almeida@unparallel.pt

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page iii

Confidentiality: Public Distribution

DOCUMENT CONTROL

Version Status Date

1.1 Full draft version 14 June 2019

1.2 Further updates and final for internal review 24 June 2019

2.0 Final Version 30 June 2019

D5.5 Workflow Development Tools - Final Version

Page iv Version 2.0 30 June 2019

Confidentiality: Public Distribution

TABLE OF CONTENTS

1. Introduction ... 1

1.1 Motivation ... 1

1.2 Outline ... 2

2. Crossflow Workflow Language.. 3

2.1 Running Example .. 4

2.2 Code Generation ... 4

3. Graphical Workflow Modeling .. 7

3.1 Background ... 7

3.2 Crossflow Graphical Model Editor (EuGENia-based) ... 7

3.2.1 Editor Updates .. 8
4. Textual Workflow Modeling .. 11

4.1 Background ... 11

4.2 Crossflow Textual Model Editor (Xtext-based) ... 12

4.2.1 Editor Updates .. 15

4.3 Crossflow XML-based Model Editing (Flexmi) ... 16

5. Workflow Deployment, Execution, and Monitoring .. 17

5.1 Crossflow Model Deployment and Execution (Eclipse) .. 17

5.2 Crossflow Model Deployment, Execution, Monitoring, and Management (Web-based) 18

5.3 Crossflow Worker Execution (CLI) ... 26

6. Installation Guides .. 28

6.1 Crossflow Graphical Editor Installation and Launch ... 28

6.2 Crossflow Textual Editor Installation and Launch.. 28

6.3 Crossflow Web Application Installation and Launch .. 29

7. Conclusion and Future Work .. 31

Table on final status of use-case partner requirements for WP5 ... 32

Table on final status of technology requirements for WP5 ... 33

REFERENCES ... 34

Appendix A: Crossflow Graphical Modeling Language Definition (crossflow.emf) .. 35

Appendix B: Crossflow Textual Workflow Modeling Language Definition (Crossflow.xtext) 37

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page v

Confidentiality: Public Distribution

EXECUTIVE SUMMARY

Work package 5 (WP5) aims at creating a framework for supporting the development of

high-performance declarative open-source project analysis workflows. This is

underpinned by Crossflow—a domain-specific language capable of expressing open-

source project analysis workflows in a high level of abstraction. Creation and execution

of Crossflow workflows is aided by an Eclipse-based graphical editor and a browser-

based interface providing feedback during and after the execution of the workflow,

respectively. Workflows are executed through a scalable execution engine, capable of

both parallel and distributed execution that is running against code generated using

appropriate model transformation languages to executable code.

This document expands upon D5.3 by providing details into the current implementation

of Crossflow by means of an Eclipse-based graphical model editor as well as by

presenting new components that include a browser-based workflow deployment,

monitoring, and execution-management interface. First, it presents an exemplary use

case showcasing the creation of a Crossflow workflow model, the generation of base

classes from such a model, as well as the specification of fine-grained behaviour

through implementations extending generated code. Secondly, it presents packaging and

deployment of Crossflow workflows as well as their monitoring and execution-

management during runtime.

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 1

Confidentiality: Public Distribution

1. INTRODUCTION

This document will present the development tools of the workflow component of CROSSMINER.

Workflows allow for the definition of bespoke analysis algorithms in a high-level domain-specific

language and require the creation of appropriate tools to create, manipulate, generate and monitor

them and their execution.

Figure 1 depicts the integration of Crossflow in the Crossminer architecture. On one hand,

workflow specifications, i.e. Crossflow models created by the employing workflow development

tools described in Sections 3-4 of this document, can be executed by metric providers by

instantiating the Crossflow Java API. On the other hand, Crossflow workflow tasks can retrieve

data from the Crossminer knowledge base REST API (cf. Section 9.4 in D6.5). In more detail, data

from the knowledge base can be retrieved within the context of a Crossflow workflow by

submission of HTTP GET/POST requests that are coded into workflow tasks and triggered during

their workflow execution (cf. Figure 36 in D6.5).

1.1 MOTIVATION

Two important factors when measuring the effectiveness of a software process or product are the

level of abstraction and the level of reusability. Important aspects in this regard include increasing

REST API

 Web Application

CROSSMINER Platform

Metric Providers

Data Bases File System

Persistence

Source code analysis

System configuration analysis

DevOps Dashboard
Advanced integrated development

Environments (IDE)

Natural language analysis

OSSMETER

COMPONENTS

CROSSMINER

COMPONENTS

OSSMETER COMPONENTS
REFACTORED IN CROSSMINER

Fact Providers

Workflow

based
knowledge

extractors

(Crossflow)

Cross project
relationship

analysis

DevOps

Backend

Figure 1: Integration of Crossflow in Crossminer architecture.

D5.5 Workflow Development Tools - Final Version

Page 2 Version 2.0 30 June 2019

Confidentiality: Public Distribution

the developer's productivity, decreasing the cost of software construction while preserving the de-

sired quality and improving the reusability and maintainability of software.

Model Driven Development (MDD), is an approach to software development elevating models to

first-class citizens of the process (Mohagheghi, Fernandez, Martell, Fritzsche, & Gilani, 2009). As

such, it is focused on the creation of semantically-rich models encapsulating the problem and/or

solution domains, while leaving the execution domain to model-based code generators.

Such models can be based on a graphical or textual representation (or a mixture of both) and be

supported by graphical or textual design tools. These tools can either be generic and bound to a

high-level abstract domain (such as object graphs), hence requiring more effort to describe do-

main-specific concepts or are bound to the domain and cannot be used for any other purpose. As

such, it is both important to choose the appropriate level of abstraction and the type of representa-

tion for the domain in question.

1.2 OUTLINE

Modeling language editors are commonly split into three categories: graphical, textual, and hybrid;

in D5.3 we presented an overview of those categories and their core differences. In this deliverable

we briefly describe the selection of tools and frameworks upon which Crossflow editor

implementations are built. Moreover, we present the current state of the Crossflow graphical and

textual editor implementation in detail and alongside a running example. Next, we present the

Crossflow web application enabling deployment, monitoring, and management of workflow

execution in web browser environments.

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 3

Confidentiality: Public Distribution

2. CROSSFLOW WORKFLOW LANGUAGE

This section provides a short overview of the Crossflow language (Kolovos, Neubauer, Barmpis,

Matragkas, & Paige, 2019) by describing its concepts and thus updating earlier deliverables such as

D5.1. The Crossflow language is defined by the Crossflow Ecore metamodel (cf. simplified version

in Figure 2) that is referenced by both graphical and textual language implementation of Crossflow

presented in Section 3.2 and 4.2, respectively, as well as used by the Crossflow code generator to

produce strongly-typed scaffolding Java code from workflow models.

Figure 2: Simplified version of the Crossflow language metamodel (crossflow.ecore).

Workflow. In detail, instances of a Crossflow Workflow may contain types, streams, tasks,

and languages.

Type. Instances of Type represent data types and may specify multiplicity (isMany attribute),

existing (or intended) implementations through the value of the impl attribute as well as instances

of Field detailed by a name, multiplicity (isMany attribute), and type.

Stream. Instances of Stream either represent queues or topics in a workflow model. Streams

manifest either as instances of Queue or Topic and receive input from tasks as well as produce

output for tasks. Queues and topics are following the point-to-point and publish-subscribe

subscription model, respectively.

Task. Instances of Task are defined by name, execution restriction to only allow the master node to

execute them (masterOnly attribute), and output multiplicity (multipleOutputs attribute).

Moreover, tasks may manifest as instances of Source or Sink. Sources and sinks produce input

and output for their containing workflow, respectively.

Language. Instances of Language are defined by name, package, generated source code output

directory (outputFolder attribute), and generated base source code output directory

(genOutputFolder attribute). Moreover, languages may own parameters. Instance of Parameter

are defined by name and value to represent additional information required by a particular

language. For example, the Python language requires the specification of a parameter named

module for modularization, i.e. splitting programs into several programs to enable reuse and ease

maintenance.

D5.5 Workflow Development Tools - Final Version

Page 4 Version 2.0 30 June 2019

Confidentiality: Public Distribution

2.1 RUNNING EXAMPLE

This subsection provides a brief introduction of the running example appearing throughout the

remaining sections of the document.

In summary, the initial activity in the running example, i.e. TechnologySource in Figure 3,

entails reading tuples consisting of keyword and file extension from a comma separated file

(CSV). Next, the CodeSearcher activity involves looking for instances of files from specific

modeling technologies on GitHub, i.e. by using their file extensions and a keyword contained in

the file as the matching metric. The repositories containing such files are then cloned locally and

various analysis steps are performed to calculate the number of repositories, files and authors for

each such technology (cf. RepositorySearcher). Finally, this analysis data is aggregated and

output to console (cf. RepositoryResultSink).

More specifically, the first time the example workflow is executed in a distributed setup, different

worker nodes will end up with different cloned Git repositories as a result of the execution of their

repository search tasks (cf. RepositorySearchDispatcher). The next time the workflow is

executed (e.g. after a bug fix or after adding more technologies to the input CSV file), repository

search jobs, i.e. executing queries to the GitHub API, are routed to nodes that already have clones

of relevant repositories from the previous execution (if available). Thus, unnecessary cloning of

the same repositories in different nodes as required by subsequent repository analysis jobs, i.e.

requiring access to repository clones, is prevented.

Figure 3: Crossflow Running Example Activity Diagram.

2.2 CODE GENERATION

The capability of generating base classes and executables from models created by either one of the

Crossflow editors (cf. 3.2 and 4.2) has been made available to the Eclipse environment through

context menu entries. Note that this capability requires the installation of Crossflow as outlined in

Section 60. Moreover, make sure that Crossflow executables have been created beforehand

Crossflow models, i.e. files with the extension crossflow_diagram and crossflow_model, can

be employed for base class code generation by right-click and selection of “Crossflow” followed

by “Generate CROSSFLOW Base Classes” in the Package Explorer view (cf. Figure 4). In detail,

this will generate base classes and skeletons of implementations classes in the location defined by

the property “Gen Output Folder” and “Output Folder” of Language instances, respectively (cf.

Figure 5). The keywords outputFolder and genOutputFolder of Language instances in

textual Crossflow models serve the equivalent purpose (cf. Figure 6).

TechnologySource

RepositoryResultSink

RepositorySearchDispatcher

RepositorySearcher

CodeSearcher

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 5

Confidentiality: Public Distribution

Figure 4: Crossflow context menu in Eclipse Package Explorer view.

Figure 5: Running example workflow Java Language specification in Properties view.

Figure 6: Running example workflow Java Language specification in Crossflow textual model editor.

Additionally, a folder named “experiment” is created containing workflow input and output data

directories, a web browser-based representation of the Crossflow model for the web browser

(abstract.graph), and a configuration file for the Crossflow model deployment, execution,

monitoring, and management web application (experiment.xml).

Finally, the generation of executables of the selected Crossflow model as well as their assembly

into a ready-to-deploy ZIP archive is accomplished by right-clicking on the Crossflow model in

the Package Explorer view and selecting “Crossflow” followed by “Generate Deployment

Artifacts”. Figure 7 shows the running example in the Package Explorer in its ready-to-deploy

state.

D5.5 Workflow Development Tools - Final Version

Page 6 Version 2.0 30 June 2019

Confidentiality: Public Distribution

Figure 7: Running example project ready-to-deploy state in Package Explorer view.

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 7

Confidentiality: Public Distribution

3. GRAPHICAL WORKFLOW MODELING

This section provides background on graphical editors and in particular EuGENia
1
 (Kolovos,

García-Domínguez, Rose, & Paige, 2017) and GMF, i.e. the open-source (modeling) language

graphical editor creation tool chosen to implement the Crossflow graphical editor. Crossflow is the

domain-specific language created for constructing and editing workflows in CROSSMINER and is

described in D5.2, Section 2.

3.1 BACKGROUND

Graphical editors focus on the use of shapes and images to provide a high-level representation of

the domain model. Such editors often provide common graphics-related functionalities like

inserting, deleting, moving and resizing graphical elements, which are directly linked to the

domain model elements themselves; as such, any domain-level changes made in these graphical

elements (such as the addition of a reference to another element) will be mirrored in the relevant

domain model elements.

This type of editor is well suited for rapid creation/prototyping of models from small- to medium-

sized languages with the use of drag-and-drop or copy-paste techniques. When the language starts

becoming sufficiently large, graphical editors may end up overtly complex to use, as finding

appropriate elements or connections in the UI may start becoming laborious. Similarly, when the

model itself is sufficiently large, navigating such a visual space may end up taking substantial

amounts of time and effort. Techniques like views and filters can alleviate some of these concerns

but the core issue of managing large models in a graphical environment is a complex one,

nevertheless.

EuGENia. EuGENia (Kolovos, García-Domínguez, Rose, & Paige, 2017) is a graphical editor

generation language as part of the Epsilon
2
 modeling suite. It is described as a front-end to GMF,

aimed at speeding up the process of creating GMF-based graphical editors. Simple editors can be

generated with the addition of a small number of annotations to the language (metamodel)

denoting which elements are to be represented visually in the diagram (and which shape they will

be), which references in the language (from one element to another) are to be visible, which

element represents the diagram itself, etc. Further enhancements to the editor can be achieved in

multiple ways, such as by editing the generated Java code of the editor and adding any custom

logic regarding the representation of any diagram elements and their interactions, as well as any

additional UI elements that may be useful for the current domain. An alternative is to create a

polishing transformation (written in the Epsilon Object Language
3
) that has access to and can

manipulate both the language model and the graphical model that is used to create the generated

editor.

3.2 CROSSFLOW GRAPHICAL MODEL EDITOR (EUGENIA-BASED)

In order to use EuGENia to generate a graphical editor for Crossflow, the Crossflow language had

to be augmented with relevant annotations denoting the various visual semantics of each element.

Details on concepts available in the Crossflow language are described in Section 2. Moreover,

1
 https://www.eclipse.org/epsilon/doc/EuGENia/

2
 https://www.eclipse.org/epsilon/

3
 https://www.eclipse.org/epsilon/doc/eol/

D5.5 Workflow Development Tools - Final Version

Page 8 Version 2.0 30 June 2019

Confidentiality: Public Distribution

Appendix A: Crossflow Graphical Modeling Language Definition (crossflow.emf) provides a

complete copy of the Crossflow graphical workflow modelling language definition, i.e. by means

of crossflow.emf, that is current as by the time of the submission of this document. It shows a

textual representation of the enhanced language, including the aforementioned annotations.

3.2.1 Editor Updates

In comparison to the previous version of the editor (cf. Figure 8), the current version of the editor

(cf. Figure 9) reflects the following adjustments:

 The graphical element of queues has been customized by replacing the circle shape with the

shape of a cylinder.

 The graphical element of sources and sinks has been customized by replacing the shape of

rounded rectangles with trapezoids.

 The rectangularly-shaped concept of Language and fields to select the language for instances

of tasks, i.e. including Source and Sink, i.e. specific forms of Task, has been introduced to

conform to the latest version of the Crossflow metamodel.

Figure 8: Running example workflow visualized in the previous version of the Crossflow graphical model editor (cf.
D5.3).

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 9

Confidentiality: Public Distribution

Figure 9: Running example workflow visualized in the current version of the Crossflow graphical mod-
el editor.

The Crossflow Diagram Editing editor enables populating Crossflow graphical models, i.e.

files with the extension .crossflow_diagram, with elements of the Crossflow language by the

use of the editor’s palette panel and properties view. For example, the task RepositorySearcher

D5.5 Workflow Development Tools - Final Version

Page 10 Version 2.0 30 June 2019

Confidentiality: Public Distribution

of type CommitmentTask uses a configuration of type TechnologyCollection and produces

multiple outputs to the RepositoryResults queue (cf. Figure 10).

Figure 10: Crossflow Graphical Editor palette panel and properties view usage example.

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 11

Confidentiality: Public Distribution

4. TEXTUAL WORKFLOW MODELING

This section provides background on textual editors and in particular Xtext
4
 (Eysholdt & Behrens,

2010), i.e. the open-source (modeling) language textual editor creation tool chosen to implement the

Crossflow textual editor, and Flexmi
5
 (Kolovos, Matragkas, & Garcia-Dominguez, Towards

Flexible Parsing of Structured Textual Model Representations, 2016). Crossflow is the domain-

specific language created for constructing and editing workflows in CROSSMINER and is

described in D5.3, Section 3.

4.1 BACKGROUND

Textual editors focus on using structured text for managing domain models. This text is often a

simplified view of the domain elements themselves, often augmented with small textual or

graphical queues to aid the understanding of the structure. Such editors often offer a tree-based

view of the model, whereby each domain element is displayed as a separate line of text, containing

any of its features nested inside it; other views can include table views, commonly used for editing

the features of domain elements.

This type of editor can easily represent the containment structure of a model and offers an

alternative development approach for those more adept at creating text-based documents. Whilst

textual editors can show the structure of arbitrarily large models, managing such models can still

remain challenging as one may need to find and manipulate specific elements in the model that

they may not be able to uniquely identify without navigating a large portion of the model itself.

Xtext. To support the development of textual Domain-Specific Modeling Languages (DSMLs)

(Kelly & Tolvanen, 2008), frameworks, such as Xtext (Eysholdt & Behrens, 2010), emerged,

enabling language designers to ease and speed-up language development by leveraging advances

in editor technology of mainstream IDEs. Such frameworks automate, for instance, the creation of

language specific parsers, serializers, and editors providing basic syntax highlighting, content-

assist, folding, jump-to-declaration, and reverse reference lookup across multiple files.

The kind of language created by employing Xtext, which relies on the EMF, can range from small

DSMLs to fully-blown General Purpose Languages (GPL). This also includes textual

configurations files or human-readable requirement documents. The motivation of Xtext is to

automate the generation of basic tooling support for language specifications and thus increase

readability, writability, and understandability of documents written in those languages.

Starting with a grammar definition, Xtext generates a parser, serializer and a basic editor

implementation for the specified language. Moreover, generated artifacts can be adapted via

dependency injection and the use of the Xtext API. Thus, generated artifacts can include

customized implementations, such as for validation and linking/scoping.

Flexmi. Flexmi is a flexible algorithm for parsing well-formed XML documents into Ecore

metamodel-conforming in-memory models. The parser developed for Flexmi performs a depth-

first traversal of the elements in the XML document, expects to find a nsuri processing instruction,

i.e. declaring a unique namespace identifier, and employs a stack to keep track of its position

during document parsing. The Flexmi implementation also includes a renderer that is accessible as

an Eclipse view named “Flexmi Renderer”.

4
 http://www.xtext.org

5
 https://www.eclipse.org/epsilon/doc/articles/flexmi/

D5.5 Workflow Development Tools - Final Version

Page 12 Version 2.0 30 June 2019

Confidentiality: Public Distribution

4.2 CROSSFLOW TEXTUAL MODEL EDITOR (XTEXT-BASED)

In this section we present the Crossflow textual DSML, i.e. conforming to the structural compo-

nents of the Crossflow language as defined by the Crossflow metamodel (cf. Figure 2).

Appendix A: Crossflow Graphical Modeling Language Definition (crossflow.emf) provides a

complete copy of the language grammar that is current as by the time of the submission of this

document.

The Crossflow Editor editor enables populating Crossflow textual models, i.e. files with the

extension .crossflow_model, with elements of the Crossflow language either by inserting

textual tokens or by using of the editor’s content assist feature accessible through the keyboard

shortcut CTRL + Space followed by the selection of an element offered by the displayed list of

viable textual tokens to be inserted at the current position of the cursor. For example, selecting

CodeSearcher as viable value for the Repositories queue’s outputOf attribute (cf. Figure

11).

Figure 11: Crossflow Textual Editor content assist
usage example.

Moreover, the editor offers validation and quick fix features. The former is triggered as a result of

any change performed to the textual model. The latter is accessible by clicking on the light bulb

error indicator and selecting an appropriate solution (cf. Figure 12).

Figure 12: Crossflow Textual Editor validation
and quick fix usage example.

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 13

Confidentiality: Public Distribution

The complete runtime example’s Crossflow textual model equivalent to the Crossflow graphical

model (cf. Figure 9) is depicted in Figure 13 (types and languages), Figure 14 (tasks), and

Figure 15 (streams).

D5.5 Workflow Development Tools - Final Version

Page 14 Version 2.0 30 June 2019

Confidentiality: Public Distribution

Figure 13: Running example workflow types and languages visualized in the Crossflow textual model editor.

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 15

Confidentiality: Public Distribution

Figure 14: Running example workflow tasks visualized

in the Crossflow textual model editor.

Figure 15: Running example workflow streams visu-

alized in the Crossflow textual model editor.

4.2.1 Editor Updates

Similarly to the updates made in the graphical editor (cf. Section 3.2.1), the textual editor has

been adapted to conform to the latest version of the Crossflow metamodel (cf. Figure 2). For

example, grammar rules for representing the concept of Language and Field have been

introduced.

D5.5 Workflow Development Tools - Final Version

Page 16 Version 2.0 30 June 2019

Confidentiality: Public Distribution

4.3 CROSSFLOW XML-BASED MODEL EDITING (FLEXMI)

In this section we present the result of the running example modelled using the XML-based

Flexmi editor (cf. Figure 16) as well as its rendered version in the Flexmi Renderer (cf. Figure 17).

Figure 16: Running example workflow visualized in the Flexmi Editor.

Figure 17: Running example workflow visualized in the Flexmi Renderer.

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 17

Confidentiality: Public Distribution

5. WORKFLOW DEPLOYMENT, EXECUTION, AND MONITORING

This section presents the implementation of for the deployment, execution, and monitoring of

workflow models created by the Crossflow Graphical Model Editor and Crossflow Textual Model

Editor presented in 3.2 and 4.2, respectively. Finally, we present the Crossflow Command Line

Interface (CLI) in X.

5.1 CROSSFLOW MODEL DEPLOYMENT AND EXECUTION (ECLIPSE)

The capability of deploying and executing models that have been created by either one of the

Crossflow editors (cf. Sections 3.2 and 4.2) has been made available to the Eclipse environment

through context menu entries. Note that this capability requires the installation of Crossflow as

outlined in Section 6. Moreover, make sure that Crossflow executables have been created

beforehand. Crossflow models, i.e. files with the extension crossflow_diagram and

crossflow_model, can be deployed by right-click and selection of “Crossflow” followed by

“Deploy Artifacts” in the Package Explorer view (cf. Figure 18).

Figure 18: Running example workflow upload in Crossflow context menu.

The result of this procedure is visible by pointing a web browser to the start page of the Crossflow

web application (cf. Figure 19).

Figure 19: Running example workflow upload completed in Crossflow web application.

D5.5 Workflow Development Tools - Final Version

Page 18 Version 2.0 30 June 2019

Confidentiality: Public Distribution

Further, to trigger the execution of the selected Crossflow model right after it has been deployed,

right-click the Crossflow model in the Package Explorer view and select “Crossflow” followed by

“Deploy Artifacts and Run (new browser window)”. Consequently, a new instance of the

operating system’s default browser will open and navigate to Crossflow web application start page

and display the uploaded workflow as “running”, i.e. instead of “stopped”, after a delay of

approximately three seconds, i.e. allowing the web server runtime to load uploaded resources.

5.2 CROSSFLOW MODEL DEPLOYMENT, EXECUTION, MONITORING, AND

MANAGEMENT (WEB-BASED)

This subsection describes steps involved during deployment, execution, monitoring, and

management of Crossflow models by the use of the Crossflow web application.

Configuration. Workflows that are deployed within the Crossflow web application are configured

by means of an XML-based experiment configuration file. Figure 20 depicts the generated

experiment configuration of the running example adapted in line two, seven, and thirteen by

replacing the auto-generated title, summary, and description stub of the experiment, respectively.

Line three specifies the root class of the running example, i.e. extending

org.eclise.scava.crossflow.runtime.Workflow, owning the workflow’s streams and

tasks as well as behaviour to launch master and worker instances. Line four defines the name and

path to the running example workflow packaged as a Java ARchive (JAR). Lines five and six

specify the experiment’s input and output directory, respectively. Lines ten and eleven specify the

experiment’s input and output files for workflow Source and Sink and appear as “Input” and

“Output” tab on the experiment’s dedicated page in the Crossflow web application, respectively.

Line eight defines the target web server running an instance of the Crossflow web application by

means of its IP address or DNS name followed by colon and port number. Currently, the value of

the webServer attribute is being picked up by the Eclipse Package Explorer Crossflow context

menu during workflow deployment and execution (cf. Section 5.1) and may require adaptation,

e.g. localhost:80 (or: localhost), for deployment on the Crossflow Docker image web server

instance (cf. Section 6.3).

Figure 20: Running example workflow XML-based experiment configuration.

Deployment. Workflows can be deployed within the Crossflow web application by browsing to

the “Upload New Workflow” page accessible through a button located on the main page. The

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 19

Confidentiality: Public Distribution

upload page displays a form requiring the input of an experiment name, an assembled workflow

archive, and (optionally) the selection of a checkbox for immediate execution of the specified

workflow (cf. Figure 21). More specifically, the experiment name acts as unique internal identifier

within the context of the Crossflow master node and any worker nodes contributing to the same

master node. The assembled workflow archive is represented by the ZIP archive file generated by

the use of the Crossflow context menu and in particular the selection of “Generate Deployment

Artifacts” (cf. Section 2.2). Clicking the “Upload” button on the upload page causes the specified

workflow to be deployed and (optionally) executed—producing the equivalent result as achieved

by selecting “Deploy Artifacts” or “Deploy Artifacts and Run (new browser window)” from the

Crossflow context menu in the Eclipse Package Explorer view in case the “Launch experiment

immediately” checkbox is checked. Further, the same artifacts generated in the “Generate

Deployment Artifacts” step can be applied as deployment artifacts for worker nodes.

Alternatively, to decrease storage, e.g. by excluding workflow input files only required for master

nodes, a customized JAR may be assembled by right-click on the project name and selecting

“Export…”, then “JAR file” and following the “JAR Export” wizard.

Figure 21: Workflow upload form in Crossflow web application.

Dependencies. Currently, referenced sources and dependencies in Crossflow workflow

implementations are made available to the web server running the Crossflow web application by

packaging and supplying dependencies as JAR files to the web server’s lib folder. In detail,

Eclipse workspace projects depicted in the Eclipse Package Explorer view can be packaged into

JAR files by right-click on the project name and selecting “Export…”, then “JAR file” and

D5.5 Workflow Development Tools - Final Version

Page 20 Version 2.0 30 June 2019

Confidentiality: Public Distribution

following the “JAR Export” wizard. In particular, in the running example, the following three

projects have been packaged and exported as JAR files into the Apache Tomcat library directory:

 org.eclipse.scava.crossflow.restmule.core

 org.eclipse.scava.crossflow.restmule.dependencies

 org.eclipse.scava.crossflow.restmule.client.github

Advanced Tab. The experiment page of a workflow provides three build-in tabs. The

“Advanced” tab (cf. Figure 22) shows an overview of the experiment as well as a checkbox to

enable/disable automatic refresh of information displayed throughout several tabs on the

experiment page. Moreover, the current status of the broker, i.e. either “stopped” or “running”, to

which the Crossflow master node is connected to is displayed. Further, the occurrence of a

previous execution as well as cached data of the experiment is displayed. Also, the path in the file

system of the master node where experiments and their data is located is displayed by “Serving

from”.

Figure 22: Running example workflow experiment page “Advanced” tab in Crossflow web application.

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 21

Confidentiality: Public Distribution

Execution. Workflows available to the Crossflow web application can be launched either

automatically or manually. In the former case, either “Deploy Artifacts and Run (new browser

window)” is selected from the Crossflow context menu or the “Launch experiment immediately”

checkbox is checked during the deployment phase, respectively. In the latter case, the workflow is

launched by browsing to the workflow’s dedicated experiment page within the Crossflow web

application followed by a click on the “Start” button.

Log Tab. The log tab on the experiment page (cf. Figure 23) displays log messages produced

during the execution of a workflow and in particular instances of CrossflowLogger that is

accessible to classes extending org.eclipse.scava.crossflow.runtime.Workflow, such as

TechnologyAnalysis in the running example, by passing severity level, i.e. info, warning, or

error, and message to the log method.

Figure 23: Running example workflow experiment page “Log” tab in Crossflow web application.

Monitoring. The model tab on the experiment page (cf. Figure 24) visualizes the runtime model

representation that has been auto-generated from its runtime workflow model during code

generation (cf. Section 2.2). Web browser instances pointing to the experiment page of a

workflow subscribe to a set of ActiveMQ topics that are maintained by the Crossflow runtime and

broadcast the state of experiment execution through messages parsed into visual updates to the

runtime model.

D5.5 Workflow Development Tools - Final Version

Page 22 Version 2.0 30 June 2019

Confidentiality: Public Distribution

Figure 24: Running example workflow experiment page "Model” tab in Crossflow web application.

The status of a task is reported by its color. The color lightcyan, skyblue, palegreen, salmon, and

slategray indicate that a task has been started, is waiting, in progress, blocked, or finished,

respectively (cf. Table 1). Further, if a task is colored white, no status has been reported.

Color Semantics

Lightcyan Started

Skyblue Waiting

Palegreen In Progress

Salmon Blocked

Slategray Finished

White N/A

Table 1: Task status color semantics as reported on
workflow experiment page "Model" tab in Crossflow

web application.

Figure 25: Running example workflow experiment
page "Model” tab tooltip of Reposito-

rySearches queue in Crossflow web application.

The total number of messages residing in a queue is reported by the number displayed inside the

visible shape of a queue. Hovering over a particular queue shape displays a tooltip with detailed

information about the status of a queue (cf. Figure 25). Each queue is made up of three instances

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 23

Confidentiality: Public Distribution

of ActiveMQ queues that are referred to as Pre, Dest, and Post in Crossflow. Tasks connect to

Post instances of queues. Subs indicates the number of subscribers. More details are described in

D5.6.

Workflow-Specific Tabs. The running example owns two workflow-specific tabs—Input and

Output. These tabs are the result of a Source and Sink instance defined in the workflow model,

respectively. Figure 26 depicts the manifestation of the running example’s input in the Crossflow

web application (cf. “Input” tab). More specifically, the TechnologySource task submits

instances of Technology, i.e. consisting of file extension and MDE technology-specific keyword,

to the Technologies queue. The “Output” tab (cf. Figure 27) represents the running example’s

output in the Crossflow web application before experiment launch.

Figure 26: Running example workflow experiment page “Input” tab in Crossflow web application.

D5.5 Workflow Development Tools - Final Version

Page 24 Version 2.0 30 June 2019

Confidentiality: Public Distribution

Figure 27: Running example workflow experiment page “Output” tab in Crossflow web application.

Management. The Crossflow web application provides several paths to manage deployed

workflows from their experiment page. Clicking the “Stop” button (cf. Figure 28) triggers the

submission of termination requests to worker nodes followed by a waiting period and termination

of the master node. In case a workflow has been executed beforehand and is currently not being

executed, a “Reset” button appears on the experiment page (cf. Figure 29). Resetting an

experiment entails the removal of cached data as well as re-establishing its initial state, i.e. the

state of initial deployment after completed workflow upload.

Figure 28: Running example workflow experiment page in Crossflow web application during workflow execution.

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 25

Confidentiality: Public Distribution

Figure 29: Running example workflow experiment page in Crossflow web application after halted workflow execu-
tion.

Moreover, the “Model” tab of a workflow’s experiment page offers the ability to clear the content

of a particular queue and all queues of a workflow, respectively. In the former case, a particular

queue is cleared by right-clicking the selected queue (cf. Figure 30) followed by left-clicking the

option displayed by the appearing context menu and confirming the operation in the exposed pop-

up window (cf. Figure 31). In the latter case, all queues are cleared by right-clicking on an empty

spot in the runtime model visualization (cf. Figure 32) followed by left-clicking the option

displayed by the appearing context menu and confirming the operation in the exposed pop-up

window.

Figure 30: Running example workflow experiment page in Crossflow web application after halted workflow execu-
tion and before clearing individual cache.

D5.5 Workflow Development Tools - Final Version

Page 26 Version 2.0 30 June 2019

Confidentiality: Public Distribution

Figure 31: Running example workflow experiment page in Crossflow web application after halted workflow execu-
tion and before clearing individual cache confirmation.

Figure 32: Running example workflow experiment page in Crossflow web application after halted workflow execu-
tion and before clearing entire cache.

5.3 CROSSFLOW WORKER EXECUTION (CLI)

This subsection describes steps involved during worker execution by the use of the Crossflow

Command Line Interface (CLI).

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 27

Confidentiality: Public Distribution

Execution. Workers can connect to Crossflow workflows by the use of the Crossflow Command

Line Interface (CLI) and in particular by specifying command line parameters value such as the

name of the workflow to which they want to contribute to (required). A list of possible parameter

specifications, their semantics, and default values are provided in Table 2. A minimal example of

executing a worker connecting to the running example is listed below:

$ java -jar org.eclipse.scava.crossflow.examples.techanalysis.jar -name

TechAnalysisWorkflow -instance TechAnalysisWorkflow

Parameter Semantics Default

name The name of the workflow

master IP of the master localhost

port Port of the master 61616

stomp Port to use for STOMP based messages 61613

ws Port to use for WS based messages 61614

activeMqConfig Location of ActiveMQ configuration file

instance The instance of the master (to contribute to)

mode Must be master_bare, master or worker Master

createBroker Whether this workflow creates a broker or not true

Parallelization
The parallelization of the workflow (for non-

singleton tasks), defaults to 1
1

cacheEnabled
Whether this workflow caches intermediary

results of not
False

deleteCache

Before starting this workflow, delete the con-

tents of the cache by queue name (use empty

string to delete entire cache)

false

inputDirectory The input directory of the workflow in
6

outputDirectory The output directory of the workflow out
7

disableTermination
Flag to disable termination when queues are

empty
True

Table 2: Crossflow CLI parameters, semantics, and default values.

6
 Relative to experiment/in from the root of the user workflow project.

7
 Relative to experiment/out from the root of the user workflow project.

D5.5 Workflow Development Tools - Final Version

Page 28 Version 2.0 30 June 2019

Confidentiality: Public Distribution

6. INSTALLATION GUIDES

This section will provide installation guides for both the graphical and textual workflow editors as

well as the deployment, monitoring, and execution-management web-application presented in this

document. The guides assume that the user has installed the latest version of Eclipse (Photon)

Modeling Tools distribution
8
 and has Java 8 installed on their machine.

6.1 CROSSFLOW GRAPHICAL EDITOR INSTALLATION AND LAUNCH

This subsection describes the installation and launch of the Crossflow graphical editor. The use of

said editor for the creation of graphical workflow specifications is described in Section 3.2.

Installation. In order to setup the Crossflow graphical editor, the following software needs to be

added to the Eclipse installation, using the “Install New Software” option in the “Help” menu:

 GMF Tooling (repository: http://download.eclipse.org/modeling/gmp/gmf-

tooling/updates/releases/)

The next step is to import the Crossflow graphical editor project from the SCAVA Crossminer

repository
9
. After cloning this Git repository to the local machine, the projects can be imported into

the Eclipse workspace by using the “File > Import > Git > Projects from Git > Existing local

repository”. After selecting the local clone, use “Import existing Eclipse projects” and then in the

next page select the following projects to be imported, before clicking “Finish”:

 org.eclipse.scava.crossflow.language(.*)

Launch. Once these tools and projects are installed, running a new Eclipse instance from the “Run”

menu, selecting “Run Configurations” and creating a new “Eclipse Application” will enable the

editor.

In this new Eclipse instance, first create a new Plug-in Project and then a new graphical Crossflow

model by right-clicking on the created project and selecting “File > New > Other > Crossflow

Diagram”. This will create a new file with the extension .crossflow_diagram in the Crossflow

Diagram Editing editor ready to be populated with elements of the Crossflow language.

6.2 CROSSFLOW TEXTUAL EDITOR INSTALLATION AND LAUNCH

This subsection describes the installation and launch of the Crossflow textual editor. The use of said

editor for the creation of textual workflow specifications is described in Section 4.2.

Installation. The Crossflow textual editor is installed as follows. First, make sure required Xtext

Eclipse plugins are installed; to install Xtext in Eclipse, (i) select “Help > Install New Software”,

(ii) add the Xtext update site
10

, (iii) select the Eclipse plugin named “Xtext Redistributable”, (iv)

click the “Next >” button, and (v) follow the instructions to finalize the plugin installation.

8
 https://www.eclipse.org/downloads/eclipse-packages/

9
 https://github.com/crossminer/scava/tree/crossflow/crossflow

10
 Xtext Eclipse update site: http://download.eclipse.org/modeling/tmf/xtext/updates/composite/releases/

http://download.eclipse.org/modeling/gmp/gmf-tooling/updates/releases/
http://download.eclipse.org/modeling/gmp/gmf-tooling/updates/releases/
https://github.com/crossminer/scava/tree/crossflow/crossflow
http://download.eclipse.org/modeling/tmf/xtext/updates/composite/releases/

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 29

Confidentiality: Public Distribution

Secondly, the Github repository https://github.com/crossminer/scava/tree/crossflow/crossflow is

cloned to a particular location on a user’s local machine. Third, the following set of projects are

imported using the “Existing Projects into Workspace” wizard having selected “Search for nested

projects”:

 org.eclipse.scava.crossflow.language(.*)

 org.eclipse.scava.crossflow.language.xtext(.*)

Launch. Once these tools and projects are installed, running a new Eclipse instance from the “Run”

menu, selecting “Run Configurations” and creating a new “Eclipse Application” will enable the

editor.

In this new Eclipse instance, first create a new Plug-in Project and then a new textual Crossflow

model by right-clicking on the created project and selecting “File > New > Other > Crossflow

Model” and confirming the conversion of the selected parent project to an Xtext if requested. This

will create a new file with the extension .crossflow_model and display it in the Crossflow

Editor ready to be populated with elements of the Crossflow language.

6.3 CROSSFLOW WEB APPLICATION INSTALLATION AND LAUNCH

Installation. The Crossflow web application is available as a Docker container image hosted on

Docker Hub
11

. To deploy the said image, make sure the target machine has a running Docker

installation and provides access to the Docker CLI either by an application such as Kitematic or the

target machine operating system (native) console allowing to issue Docker commands. To install

Docker on the target machine, follow the instructions provided by the official Docker

documentation
12

.

Launch. The Docker Crossflow web application container can be deployed from a Docker CLI-

capable console by issuing the following command exposing several parameters, such as -p for

port mappings between the target machine and the Docker container, allowing individual

configurations
13

:

$ docker run -it --rm -d --name crossflow \

 -p 80:8080 \

 -p 61616:61616 \

 -p 61614:61614 \

 -p 5672:5672 \

 -p 61613:61613 \

 -p 1883:1883 \

 -p 8161:8161 \

 -p 1099:1099 \

 crossminer/crossflow:latest

Running the above command in a Docker CLI-capable console will first retrieve the Docker

Crossflow web application, i.e. similarly to issuing the command docker pull

11

 The official Crossflow Docker Hub repository is publicly available at https://hub.docker.com/r/crossminer/crossflow.
12

 The official Docker documentation provides details on how to install Docker on several different platforms and can

be found online at https://docs.docker.com.
13

 The semantics of Docker run parameters are described by the output produced by issuing the console command
docker run –help

https://github.com/crossminer/scava/tree/crossflow/crossflow
https://hub.docker.com/r/crossminer/crossflow
https://docs.docker.com/

D5.5 Workflow Development Tools - Final Version

Page 30 Version 2.0 30 June 2019

Confidentiality: Public Distribution

crossminer/Crossflow:latest, and then launch the obtained image with respect to the

specified configuration parameters. In more detail, it follows the steps defined in the respective

Dockerfile
14 that includes (i) obtaining copies of Apache Tomcat and Apache ActiveMQ, (ii)

configuring both Apache Tomcat and Apache ActiveMQ by copying predefined XML-based

configuration files to their respective application configuration directories, (iii) copying the

Crossflow web application archive file to the Apache Tomcat web application deployment

directory, and (iv) launching both Apache ActiveMQ and Apache Tomcat. Finally, the Crossflow

web application (cf. Figure 33) can be accessed by pointing a web browser instance to specified

port of the target machine followed by /org.eclipse.scava.crossflow.web/ or, in case no

changes have been made to the above Docker run command, to
http://localhost/org.eclipse.scava.crossflow.web/.

Figure 33: Docker Crossflow web application start page.

14

 The Crossflow web application Dockerfile is part of the org.eclipse.scava.crossflow.web.docker project

and publicly available at

https://raw.githubusercontent.com/crossminer/scava/crossflow/crossflow/org.eclipse.scava.crossflow.web.docker/Docke

rfile

http://localhost/org.eclipse.scava.crossflow.web/
https://raw.githubusercontent.com/crossminer/scava/crossflow/crossflow/org.eclipse.scava.crossflow.web.docker/Dockerfile
https://raw.githubusercontent.com/crossminer/scava/crossflow/crossflow/org.eclipse.scava.crossflow.web.docker/Dockerfile

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 31

Confidentiality: Public Distribution

7. CONCLUSION AND FUTURE WORK

This document presented the progress within the Crossminer task associated with the

implementation of tools supporting the workflow modeling process. Workflows allow for the

definition of bespoke analysis algorithms in a high-level domain-specific language and require the

creation of appropriate tools to create, manipulate, generate, monitor, and manage them and their

execution. The reported progress in this regard includes the implementation of a graphical and

textual editor supporting the modeling of Crossflow workflows as well as the implementation of a

web browser-based application for the deployment, monitoring, and management of workflows.

Future work in this regard includes the adaptation of the Crossflow metamodel, and thus also both

graphical as well as textual language, for the definition of additional concepts that may arise from

unforeseen workflow specifications. Moreover, the development of transformations between the

graphical language as well as the textual language may be provided to enable seamless editing of

both textual as well as graphical models. Further, the packaging-step performed during the

generation of executables for the deployment of Crossflow workflows will be extended to automate

the packaging of referenced projects (cf. “Dependencies” paragraph in Section 5.1).

Tables on the final status of the user and technology requirements related to WP5 of the Crossminer

project can be found below, containing the requirement name and description, its overall priority as

well as its final status.

D5.5 Workflow Development Tools - Final Version

Page 32 Version 2.0 30 June 2019

Confidentiality: Public Distribution

TABLE ON FINAL STATUS OF USE-CASE PARTNER REQUIREMENTS FOR WP5

ID Description Overall Priority Status

U122
Provides a mechanism to define a retrieval, cleaning

and analysis process based on reusable components
SHOULD Supported

U123
Provides a mechanism to play individual parts of the

retrieval and analysis process
SHOULD Supported

U124
Provides a mechanism to easily analyse new data

sources and define new measures
SHALL Supported

U125 Able to use data from all existing data collectors SHOULD Supported

U126
Provides a mechanism to analyse and visualise data in

an external tool (e.g. R, Tableau, .. Excel)
SHOULD Supported

U127 Provides a library of reusable components SHOULD Supported

U128
Provides a list of available data sets when building a

new workflow
SHOULD Unsupported

U129 Provides R as a computing engine for analyses SHOULD Supported

U130
Able to identify if the developer is not using the most

recent version of a library and provide notification
SHALL Supported

U131
Provides a means to execute a workflow across data

sets
SHOULD Supported

U132 Provides a means to execute a workflow across forges SHOULD Supported

U133 Able to support different execution priorities MAY Unsupported

U134
Allows compositions of Crossminer and external

results to support decisions
SHALL Supported

U135 Able to define specific formatting for the results SHALL Supported

U136
Able to process data sets from GitHub and

StackOverflow
SHALL Supported

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 33

Confidentiality: Public Distribution

TABLE ON FINAL STATUS OF TECHNOLOGY REQUIREMENTS FOR WP5

ID Description Overall Priority Status

D47 The framework shall provide built-in support for net-

work/API error recovery
SHALL Supported

D48 The framework shall provide built-in support for data

caching
SHALL Supported

D49
The framework shall provide support for graphical

editors for specifying knowledge extraction work-

flows

SHALL Supported

D50 The framework shall provide a Java API for specify-

ing knowledge extraction workflows
SHALL Supported

D51 The graphical workflow editors should provide sup-

port for auto-completion, navigation and refactoring
SHOULD Supported

D52 The framework shall provide parallel workflow exe-

cution capabilities
SHALL Supported

D53 The framework shall provide distributed workflow

execution capabilities
SHALL Supported

D54
The framework shall provide debugging facilities

SHALL Supported

D55 The framework shall provide workflow execution

monitoring facilities
SHALL Supported

D56
Workflow execution facilities shall be architecturally

consistent with the platform so that workflows can be

executed as metric providers

SHALL Supported

D57 Connectors shall be implemented for the APIs of

GitHub, StackOverflow and Bugzilla
SHALL Supported

D58 Connectors should be implemented for GHTorrent,

GitHub Archive and JIRA
SHOULD Unsupported

D59 The platform shall expose a REST API that workflow

components can consume
SHALL Supported

D60
The API of the platform should be formally specified

SHOULD Supported

D61
Mining tools developed in WPs 2-4 and 6 should be

embeddable as components in knowledge extraction

workflows

SHOULD Supported

D62
The platform shall provide facilities for running cus-

tom workflows and displaying the results in appropri-

ate dashboards

SHALL Supported

D5.5 Workflow Development Tools - Final Version

Page 34 Version 2.0 30 June 2019

Confidentiality: Public Distribution

REFERENCES

Eysholdt, M., & Behrens, H. (2010). Xtext: Implement your Language Faster than the Quick and Dirty Way.

Companion Proc. of OOPSLA, (pp. 307-309).
Kelly, S., & Tolvanen, J.-P. (2008). Domain-specific modeling: enabling full code generation. John Wiley & Sons.

Kolovos, D. S., García-Domínguez, A., Rose, L. M., & Paige, R. F. (2017, 2 01). Eugenia: towards disciplined and

automated development of GMF-based graphical model editors. Software & Systems Modeling, 16, 229-255.

doi:10.1007/s10270-015-0455-3

Kolovos, D. S., Matragkas, N., & Garcia-Dominguez, A. (2016). Towards Flexible Parsing of Structured Textual Model

Representations. Proceedings of the 2nd Workshop on Flexible Model Driven Engineering co-located with

{ACM/IEEE} 19th International Conference on Model Driven Engineering Languages {\&} Systems (MoDELS

2016). Saint-Malo, France: ACM/IEEE.

Kolovos, D., Neubauer, P., Barmpis, K., Matragkas, N., & Paige, R. (2019). Crossflow: A Framework for Distributed

Mining of Software Repositories. Proceedings of the 16th International Conference on Mining Software

Repositories (MSR). Montreal, QC, Canada: IEEE/ACM.

Mohagheghi, P., Fernandez, M., Martell, J., Fritzsche, M., & Gilani, W. (2009). MDE Adoption in Industry: Challenges

and Success Criteria. Lecture Notes in Computer Science, 5421, pp. 54-59. doi:10.1007/978-3-642-01648-6_6

Rumbaugh, J., Jacobson, I., & Booch, G. (2004). Unified Modeling Language Reference Manual. Pearson Higher

Education.

Steinberg, D., Budinsky, F., Paternostro, M., & Merks, E. (2009). EMF: Eclipse Modeling Framework 2.0 (2nd ed.).

Addison-Wesley Professional.

Viyović, V., Maksimović, M., & Perisić, B. (2014). Sirius: A rapid development of DSM graphical editor. Proceedings

of INES, (pp. 233-238).

Zolotas, A., & et. al. (June 2018). Towards Automatic Generation of UML Profile Graphical Editors for Papyrus. Proc.

14th European Conference on Modeling Foundations and Applications, ECMFA 2018. Toulouse, France.

Zschaler, S., Kolovos, D. S., Drivalos, N., Paige, R. F., & Rashid, A. (2009). Domain-Specific Metamodelling

Languages for Software Language Engineering. Software Language Engineering, Second International

Conference, SLE 2009, Denver, CO, USA, October 5-6, 2009, Revised Selected Papers, (pp. 334-353).

doi:10.1007/978-3-642-12107-4_23

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 35

Confidentiality: Public Distribution

APPENDIX A: CROSSFLOW GRAPHICAL MODELING LANGUAGE DEFINITION

(CROSSFLOW.EMF)

D5.5 Workflow Development Tools - Final Version

Page 36 Version 2.0 30 June 2019

Confidentiality: Public Distribution

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 37

Confidentiality: Public Distribution

APPENDIX B: CROSSFLOW TEXTUAL WORKFLOW MODELING LANGUAGE

DEFINITION (CROSSFLOW.XTEXT)

D5.5 Workflow Development Tools - Final Version

Page 38 Version 2.0 30 June 2019

Confidentiality: Public Distribution

 D5.5 Workflow Development Tools - Final Version

30 June 2019 Version 2.0 Page 39

Confidentiality: Public Distribution

D5.5 Workflow Development Tools - Final Version

Page 40 Version 2.0 30 June 2019

Confidentiality: Public Distribution

